BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33096105)

  • 1. Significant compaction of H4 histone tail upon charge neutralization by acetylation and its mimics, possible effects on chromatin structure.
    Shabane PS; Onufriev AV
    J Mol Biol; 2021 Mar; 433(6):166683. PubMed ID: 33096105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion.
    Fu I; Cai Y; Geacintov NE; Zhang Y; Broyde S
    Biochemistry; 2017 Apr; 56(14):1963-1973. PubMed ID: 28304160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of regulatory proteins to nucleosomes is modulated by dynamic histone tails.
    Peng Y; Li S; Onufriev A; Landsman D; Panchenko AR
    Nat Commun; 2021 Sep; 12(1):5280. PubMed ID: 34489435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetylation-modulated communication between the H3 N-terminal tail domain and the intrinsically disordered H1 C-terminal domain.
    Hao F; Murphy KJ; Kujirai T; Kamo N; Kato J; Koyama M; Okamato A; Hayashi G; Kurumizaka H; Hayes JJ
    Nucleic Acids Res; 2020 Nov; 48(20):11510-11520. PubMed ID: 33125082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General Purpose Water Model Can Improve Atomistic Simulations of Intrinsically Disordered Proteins.
    Shabane PS; Izadi S; Onufriev AV
    J Chem Theory Comput; 2019 Apr; 15(4):2620-2634. PubMed ID: 30865832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Breaths, Twists, and Turns of Atomistic Nucleosomes.
    Huertas J; Cojocaru V
    J Mol Biol; 2021 Mar; 433(6):166744. PubMed ID: 33309853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of histone H4 tail acetylations on cation-induced chromatin folding and self-association.
    Allahverdi A; Yang R; Korolev N; Fan Y; Davey CA; Liu CF; Nordenskiöld L
    Nucleic Acids Res; 2011 Mar; 39(5):1680-91. PubMed ID: 21047799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and binding of the H4 histone tail and the effects of lysine 16 acetylation.
    Yang D; Arya G
    Phys Chem Chem Phys; 2011 Feb; 13(7):2911-21. PubMed ID: 21157623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Acetylation Landscape of the H4 Histone Tail: Disentangling the Interplay between the Specific and Cumulative Effects.
    Winogradoff D; Echeverria I; Potoyan DA; Papoian GA
    J Am Chem Soc; 2015 May; 137(19):6245-53. PubMed ID: 25905561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations demonstrate the regulation of DNA-DNA attraction by H4 histone tail acetylations and mutations.
    Korolev N; Yu H; Lyubartsev AP; Nordenskiöld L
    Biopolymers; 2014 Oct; 101(10):1051-64. PubMed ID: 24740714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the H4 tail binding and folding landscapes via Lys-16 acetylation.
    Potoyan DA; Papoian GA
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17857-62. PubMed ID: 22988066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromatin Fiber Folding Directed by Cooperative Histone Tail Acetylation and Linker Histone Binding.
    Bascom GD; Schlick T
    Biophys J; 2018 May; 114(10):2376-2385. PubMed ID: 29655483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone Acetylation Regulates Chromatin Accessibility: Role of H4K16 in Inter-nucleosome Interaction.
    Zhang R; Erler J; Langowski J
    Biophys J; 2017 Feb; 112(3):450-459. PubMed ID: 27931745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetylated histone H4 tail enhances histone H3 tail acetylation by altering their mutual dynamics in the nucleosome.
    Furukawa A; Wakamori M; Arimura Y; Ohtomo H; Tsunaka Y; Kurumizaka H; Umehara T; Nishimura Y
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):19661-19663. PubMed ID: 32747537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of the DNA binding properties of histone H4 amino terminus. Thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 "tail" to DNA.
    Hong L; Schroth GP; Matthews HR; Yau P; Bradbury EM
    J Biol Chem; 1993 Jan; 268(1):305-14. PubMed ID: 8416938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A distinct switch in interactions of the histone H4 tail domain upon salt-dependent folding of nucleosome arrays.
    Pepenella S; Murphy KJ; Hayes JJ
    J Biol Chem; 2014 Sep; 289(39):27342-27351. PubMed ID: 25122771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary structures of the core histone N-terminal tails: their role in regulating chromatin structure.
    du Preez LL; Patterton HG
    Subcell Biochem; 2013; 61():37-55. PubMed ID: 23150245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.