These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 3309621)

  • 1. [Mechanism of enzymatic catalysis. Quantum chemistry study of models of serine proteases].
    Voĭtiuk AA
    Mol Biol (Mosk); 1987; 21(4):882-7. PubMed ID: 3309621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of catalytic mechanism of serine proteases. Viability of the ring-flip hypothesis.
    Scheiner S
    J Phys Chem B; 2008 Jun; 112(22):6837-46. PubMed ID: 18461994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Quantum chemical study of the "catalytic triad" of serine proteases].
    Voĭtiuk AA; Vasil'ev VV
    Mol Biol (Mosk); 1987; 21(3):807-13. PubMed ID: 3477691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Evaluation of the energy of the stabilization of the transitional state due to hydrogen bonds in the active site of serine proteases].
    Voĭtiuk AA
    Mol Biol (Mosk); 1987; 21(6):1671-6. PubMed ID: 3482122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of the active site from water by the incoming ligand triggers catalysis and inhibition in serine proteases.
    Shokhen M; Khazanov N; Albeck A
    Proteins; 2008 Mar; 70(4):1578-87. PubMed ID: 17912756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum chemical modeling of enzymatic reactions: the case of 4-oxalocrotonate tautomerase.
    Sevastik R; Himo F
    Bioorg Chem; 2007 Dec; 35(6):444-57. PubMed ID: 17904194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical evaluation of a model of the catalytic triads of serine and cysteine proteases by ab initio molecular orbital calculation.
    Nishihira J; Tachikawa H
    J Theor Biol; 1999 Feb; 196(4):513-9. PubMed ID: 10036203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induced structure of a helical switch as a mechanism to regulate enzymatic activity.
    Nomura AM; Marnett AB; Shimba N; Dötsch V; Craik CS
    Nat Struct Mol Biol; 2005 Nov; 12(11):1019-20. PubMed ID: 16244665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases.
    Schutz CN; Warshel A
    Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a weak H-bond --> LBHB transition on tetrahedral complex formation in serine proteases?
    Shokhen M; Albeck A
    Proteins; 2004 Feb; 54(3):468-77. PubMed ID: 14747995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantum mechanical/molecular mechanical study on the catalysis of the pyridoxal 5'-phosphate-dependent enzyme L-serine dehydratase.
    Zhao Z; Liu H
    J Phys Chem B; 2008 Oct; 112(41):13091-100. PubMed ID: 18811194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the deacylation step of serine protease catalysis in the gas phase, in solution, and in elastase.
    Topf M; Richards WG
    J Am Chem Soc; 2004 Nov; 126(44):14631-41. PubMed ID: 15521783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the base catalysis exerted by the DD-transpeptidase from Streptomyces K15: a molecular dynamics study.
    Díaz N; Sordo TL; Suárez D
    Biochemistry; 2005 Mar; 44(9):3225-40. PubMed ID: 15736933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of nitrate reduction by Desulfovibrio desulfuricans nitrate reductase--a theoretical investigation.
    Leopoldini M; Russo N; Toscano M; Dulak M; Wesolowski TA
    Chemistry; 2006 Mar; 12(9):2532-41. PubMed ID: 16411255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment.
    Cisneros GA; Wang M; Silinski P; Fitzgerald MC; Yang W
    Biochemistry; 2004 Jun; 43(22):6885-92. PubMed ID: 15170325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum chemical analysis of the enolization of ribulose bisphosphate: the first hurdle in the fixation of CO2 by Rubisco.
    King WA; Gready JE; Andrews TJ
    Biochemistry; 1998 Nov; 37(44):15414-22. PubMed ID: 9799503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Asp102 in the catalytic relay system of serine proteases: a theoretical study.
    Ishida T; Kato S
    J Am Chem Soc; 2004 Jun; 126(22):7111-8. PubMed ID: 15174882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of a universally employed enzyme: V8 protease from Staphylococcus aureus.
    Prasad L; Leduc Y; Hayakawa K; Delbaere LT
    Acta Crystallogr D Biol Crystallogr; 2004 Feb; 60(Pt 2):256-9. PubMed ID: 14747701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.