These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 3309621)
21. Classification of serine proteases derived from steric comparisons of their active sites. Barth A; Wahab M; Brandt W; Frost K Drug Des Discov; 1993; 10(4):297-317. PubMed ID: 8148470 [TBL] [Abstract][Full Text] [Related]
22. Quantum Monte Carlo study of porphyrin transition metal complexes. Koseki J; Maezono R; Tachikawa M; Towler MD; Needs RJ J Chem Phys; 2008 Aug; 129(8):085103. PubMed ID: 19044853 [TBL] [Abstract][Full Text] [Related]
23. Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation. Rittenhouse RC; Apostoluk WK; Miller JH; Straatsma TP Proteins; 2003 Nov; 53(3):667-82. PubMed ID: 14579358 [TBL] [Abstract][Full Text] [Related]
24. Elucidating the mechanism for the reduction of nitrite by copper nitrite reductase--a contribution from quantum chemical studies. De Marothy SA; Blomberg MR; Siegbahn PE J Comput Chem; 2007 Jan; 28(2):528-39. PubMed ID: 17186474 [TBL] [Abstract][Full Text] [Related]
25. Role of each residue in catalysis in the active site of pyrimidine nucleoside phosphorylase from Bacillus subtilis: a hybrid QM/MM study. Gao XF; Huang XR; Sun CC J Struct Biol; 2006 Apr; 154(1):20-6. PubMed ID: 16469506 [TBL] [Abstract][Full Text] [Related]
26. Computational enzymology: insight into biological catalysts from modelling. van der Kamp MW; Mulholland AJ Nat Prod Rep; 2008 Dec; 25(6):1001-14. PubMed ID: 19030602 [TBL] [Abstract][Full Text] [Related]
27. Investigation on an orientation and interaction energy of the water molecule in the HIV-1 reverse transcriptase active site by quantum chemical calculations. Kuno M; Palangsuntikul R; Hannongbua S J Chem Inf Comput Sci; 2003; 43(5):1584-90. PubMed ID: 14502493 [TBL] [Abstract][Full Text] [Related]
28. Reaction mechanism of caspases: insights from QM/MM Car-Parrinello simulations. Sulpizi M; Laio A; VandeVondele J; Cattaneo A; Rothlisberger U; Carloni P Proteins; 2003 Aug; 52(2):212-24. PubMed ID: 12833545 [TBL] [Abstract][Full Text] [Related]
29. A computational study of the deacylation mechanism of human butyrylcholinesterase. Suárez D; Díaz N; Fontecilla-Camps J; Field MJ Biochemistry; 2006 Jun; 45(24):7529-43. PubMed ID: 16768449 [TBL] [Abstract][Full Text] [Related]
30. Structural basis for intramembrane proteolysis by rhomboid serine proteases. Ben-Shem A; Fass D; Bibi E Proc Natl Acad Sci U S A; 2007 Jan; 104(2):462-6. PubMed ID: 17190827 [TBL] [Abstract][Full Text] [Related]
31. Transmission coefficient calculation for proton transfer in triosephosphate isomerase based on the reaction path potential method. Wang M; Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):101-7. PubMed ID: 15260526 [TBL] [Abstract][Full Text] [Related]
33. Molecular mechanism for dimerization to regulate the catalytic activity of human cytomegalovirus protease. Batra R; Khayat R; Tong L Nat Struct Biol; 2001 Sep; 8(9):810-7. PubMed ID: 11524687 [TBL] [Abstract][Full Text] [Related]
34. Protease C of Erwinia chrysanthemi: the crystal structure and role of amino acids Y228 and E189. Hege T; Baumann U J Mol Biol; 2001 Nov; 314(2):187-93. PubMed ID: 11718553 [TBL] [Abstract][Full Text] [Related]
35. Catalytic mechanism of glycosyltransferases: hybrid quantum mechanical/molecular mechanical study of the inverting N-acetylglucosaminyltransferase I. Kozmon S; Tvaroska I J Am Chem Soc; 2006 Dec; 128(51):16921-7. PubMed ID: 17177443 [TBL] [Abstract][Full Text] [Related]
36. Common protein architecture and binding sites in proteases utilizing a Ser/Lys dyad mechanism. Paetzel M; Strynadka NC Protein Sci; 1999 Nov; 8(11):2533-6. PubMed ID: 10595561 [TBL] [Abstract][Full Text] [Related]
37. Investigation of the induced-fit mechanism and catalytic activity of the human cytomegalovirus protease homodimer via molecular dynamics simulations. de Oliveira CA; Guimarães CR; Barreiro G; de Alencastro RB Proteins; 2003 Sep; 52(4):483-91. PubMed ID: 12910449 [TBL] [Abstract][Full Text] [Related]
38. Quantum mechanical modeling of catalytic processes. Bell AT; Head-Gordon M Annu Rev Chem Biomol Eng; 2011; 2():453-77. PubMed ID: 22432627 [TBL] [Abstract][Full Text] [Related]
39. The catalytic function of active site amino acid side chains in well-characterized enzymes. Allen LC Ann N Y Acad Sci; 1981; 367():383-406. PubMed ID: 6266319 [TBL] [Abstract][Full Text] [Related]
40. A new mechanism in serine proteases catalysis exhibited by dipeptidyl peptidase IV (DP IV)--Results of PM3 semiempirical thermodynamic studies supported by experimental results. Brandt W; Ludwig O; Thondorf I; Barth A Eur J Biochem; 1996 Feb; 236(1):109-14. PubMed ID: 8617253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]