These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33096305)
1. Cysteine alkylation methods in shotgun proteomics and their possible effects on methionine residues. Kuznetsova KG; Levitsky LI; Pyatnitskiy MA; Ilina IY; Bubis JA; Solovyeva EM; Zgoda VG; Gorshkov MV; Moshkovskii SA J Proteomics; 2021 Jan; 231():104022. PubMed ID: 33096305 [TBL] [Abstract][Full Text] [Related]
2. Methionine to isothreonine conversion as a source of false discovery identifications of genetically encoded variants in proteogenomics. Chernobrovkin AL; Kopylov AT; Zgoda VG; Moysa AA; Pyatnitskiy MA; Kuznetsova KG; Ilina IY; Karpova MA; Karpov DS; Veselovsky AV; Ivanov MV; Gorshkov MV; Archakov AI; Moshkovskii SA J Proteomics; 2015 Apr; 120():169-78. PubMed ID: 25779464 [TBL] [Abstract][Full Text] [Related]
3. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification. Hains PG; Robinson PJ J Proteome Res; 2017 Sep; 16(9):3443-3447. PubMed ID: 28799334 [TBL] [Abstract][Full Text] [Related]
4. [Modification of cysteine residues for mass spectrometry-based proteomic analysis: facts and artifacts]. Kuznetsova KG; Solovyeva EM; Kuzikov AV; Gorshkov MV; Moshkovskii SA Biomed Khim; 2020 Jan; 66(1):18-29. PubMed ID: 32116223 [TBL] [Abstract][Full Text] [Related]
5. Ion source-dependent performance of 4-vinylpyridine, iodoacetamide, and N-maleoyl derivatives for the detection of cysteine-containing peptides in complex proteomics. Nadler W; Berg R; Walch P; Hanke S; Baalmann M; Kerner A; Trumpp A; Roesli C Anal Bioanal Chem; 2016 Mar; 408(8):2055-67. PubMed ID: 26493978 [TBL] [Abstract][Full Text] [Related]
6. Systematic Evaluation of Protein Reduction and Alkylation Reveals Massive Unspecific Side Effects by Iodine-containing Reagents. Müller T; Winter D Mol Cell Proteomics; 2017 Jul; 16(7):1173-1187. PubMed ID: 28539326 [TBL] [Abstract][Full Text] [Related]
7. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Suttapitugsakul S; Xiao H; Smeekens J; Wu R Mol Biosyst; 2017 Nov; 13(12):2574-2582. PubMed ID: 29019370 [TBL] [Abstract][Full Text] [Related]
8. 'Shotgun' proteomic analyses without alkylation of cysteine. Wiśniewski JR; Zettl K; Pilch M; Rysiewicz B; Sadok I Anal Chim Acta; 2020 Mar; 1100():131-137. PubMed ID: 31987133 [TBL] [Abstract][Full Text] [Related]
9. Identification of consistent alkylation of cysteine-less peptides in a proteomics experiment. Woods AG; Sokolowska I; Darie CC Biochem Biophys Res Commun; 2012 Mar; 419(2):305-8. PubMed ID: 22342715 [TBL] [Abstract][Full Text] [Related]
10. Optimization of cysteine residue alkylation using an on-line LC-MS strategy: Benefits of using a cocktail of haloacetamide reagents. Murphy EL; Joy AP; Ouellette RJ; Barnett DA Anal Biochem; 2021 Apr; 619():114137. PubMed ID: 33582115 [TBL] [Abstract][Full Text] [Related]
11. Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Sechi S; Chait BT Anal Chem; 1998 Dec; 70(24):5150-8. PubMed ID: 9868912 [TBL] [Abstract][Full Text] [Related]
12. Extending the Coverage of Lys-C/Trypsin-Based Bottom-up Proteomics by Cysteine S-Aminoethylation. Tomioka R; Tomioka A; Ogata K; Chan HJ; Chen LY; Guzman UH; Xuan Y; Olsen JV; Chen YJ; Ishihama Y J Am Soc Mass Spectrom; 2024 Feb; 35(2):386-396. PubMed ID: 38287222 [TBL] [Abstract][Full Text] [Related]
13. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Pasquarello C; Sanchez JC; Hochstrasser DF; Corthals GL Rapid Commun Mass Spectrom; 2004; 18(1):117-27. PubMed ID: 14689568 [TBL] [Abstract][Full Text] [Related]
14. Threonine versus isothreonine in synthetic peptides analyzed by high-resolution liquid chromatography/tandem mass spectrometry. Kuznetsova KG; Trufanov PV; Moysa AA; Pyatnitskiy MA; Zgoda VG; Gorshkov MV; Moshkovskii SA Rapid Commun Mass Spectrom; 2016 Jun; 30(11):1323-31. PubMed ID: 27173114 [TBL] [Abstract][Full Text] [Related]
15. Iodoacetamide-alkylated methionine can mimic neutral loss of phosphoric acid from phosphopeptides as exemplified by nano-electrospray ionization quadrupole time-of-flight parent ion scanning. Krüger R; Hung CW; Edelson-Averbukh M; Lehmann WD Rapid Commun Mass Spectrom; 2005; 19(12):1709-16. PubMed ID: 15912474 [TBL] [Abstract][Full Text] [Related]
16. Method for Identification of Threonine Isoforms in Peptides by Ultraviolet Photofragmentation of Cold Ions. Solovyeva EM; Kopysov VN; Pereverzev AY; Lobas AA; Moshkovskii SA; Gorshkov MV; Boyarkin OV Anal Chem; 2019 May; 91(10):6709-6715. PubMed ID: 31042365 [TBL] [Abstract][Full Text] [Related]
17. Modification of Cysteine. Grant GA Curr Protoc Protein Sci; 2017 Feb; 87():15.1.1-15.1.23. PubMed ID: 28150879 [TBL] [Abstract][Full Text] [Related]
18. Reducing Complexity? Cysteine Reduction and S-Alkylation in Proteomic Workflows: Practical Considerations. Evans CA Methods Mol Biol; 2019; 1977():83-97. PubMed ID: 30980324 [TBL] [Abstract][Full Text] [Related]
19. A Mass Spectrometry Strategy for Protein Quantification Based on the Differential Alkylation of Cysteines Using Iodoacetamide and Acrylamide. Virág D; Schlosser G; Borbély A; Gellén G; Papp D; Kaleta Z; Dalmadi-Kiss B; Antal I; Ludányi K Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731875 [TBL] [Abstract][Full Text] [Related]