These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33096410)

  • 1. Gamma-ray buildup factor and radiation absorbed dose enhancement at tissue-bone interfaces.
    Saleh HH; Sharaf JM; Abady RS
    Appl Radiat Isot; 2021 Jan; 167():109464. PubMed ID: 33096410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of dose reductions for superficial x-rays backscattered from bone interfaces.
    Butson MJ; Cheung T; Yu PK
    Phys Med Biol; 2008 Sep; 53(17):N329-36. PubMed ID: 18695297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics.
    Manohara SR; Hanagodimath SM; Gerward L
    J Appl Clin Med Phys; 2011 Nov; 12(4):3557. PubMed ID: 22089011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assessment of bone marrow and bone endosteum dosimetry methods for photon sources.
    Lee C; Lee C; Shah AP; Bolch WE
    Phys Med Biol; 2006 Nov; 51(21):5391-407. PubMed ID: 17047259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response functions for computing absorbed dose to skeletal tissues from photon irradiation--an update.
    Johnson PB; Bahadori AA; Eckerman KF; Lee C; Bolch WE
    Phys Med Biol; 2011 Apr; 56(8):2347-65. PubMed ID: 21427484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dose perturbations by high atomic number materials in intravascular brachytherapy.
    Nath R; Yue N; Weinberger J
    Cardiovasc Radiat Med; 1999; 1(2):144-53. PubMed ID: 11229547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal dosimetry in a voxel-based rat phantom for internal exposures to photons and electrons.
    Xie T; Han D; Liu Y; Sun W; Liu Q
    Med Phys; 2010 May; 37(5):2167-78. PubMed ID: 20527551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy absorption and exposure buildup factors for some polymers and tissue substitute materials: photon energy, penetration depth and chemical composition dependence.
    Kurudirek M; Özdemir Y
    J Radiol Prot; 2011 Mar; 31(1):117-28. PubMed ID: 21346285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interaction of gamma radiation with drugs used in cholinergic medications.
    Oto B; Oto G; Madak Z; Kavaz E
    Int J Radiat Biol; 2020 Feb; 96(2):236-244. PubMed ID: 31633438
    [No Abstract]   [Full Text] [Related]  

  • 10. Effect of tissue inhomogeneity on dose distribution of continuous activity of low-energy electrons in bone marrow cavities with different topologies.
    Kwok CS; Bialobzyski PJ; Yu SK
    Med Phys; 1991; 18(3):533-41. PubMed ID: 1870497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Backscatter dose perturbation at high atomic number interfaces in megavoltage photon beams.
    Das IJ; Kahn FM
    Med Phys; 1989; 16(3):367-75. PubMed ID: 2500585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast neutron absorbed dose distributions in the energy range 0.5-80 meV--a Monte Carlo study.
    Söderberg J; Carlsson GA
    Phys Med Biol; 2000 Oct; 45(10):2987-3007. PubMed ID: 11049184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone and mucosal dosimetry in skin radiation therapy: a Monte Carlo study using kilovoltage photon and megavoltage electron beams.
    Chow JC; Jiang R
    Phys Med Biol; 2012 Jun; 57(12):3885-99. PubMed ID: 22642985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photon interaction parameters of dosimetric interest in bone.
    Manjunatha HC; Rudraswamy B
    Health Phys; 2012 Sep; 103(3):322-9. PubMed ID: 22850239
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose in bone and tissue near bone-tissue interface from electron beam.
    Shiu AS; Hogstrom KR
    Int J Radiat Oncol Biol Phys; 1991 Aug; 21(3):695-702. PubMed ID: 1869463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation absorbed doses at compact bone-titanium interfaces in diagnostic radiography: a Monte Carlo approach.
    Nicopoulou-Karayianni K; Koligliatis T; Donta-Bakogianni C; Karayiannis A; Litsas J
    Dentomaxillofac Radiol; 2003 Sep; 32(5):327-32. PubMed ID: 14709609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure-to-absorbed-dose conversion for human adult cortical bone.
    Schauer DA; Seltzer SM; Links JM
    Appl Radiat Isot; 1993 Mar; 44(3):485-9. PubMed ID: 8472022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backscattered dose perturbation effects at metallic interfaces irradiated by high-energy X- and gamma-ray therapeutic beams.
    Ravikumar M; Ravichandran R; Sathiyan S; Supe SS
    Strahlenther Onkol; 2004 Mar; 180(3):173-8. PubMed ID: 14991206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of absorbed doses near metal and dental material interfaces irradiated by x- and gamma-ray therapy beams.
    Farahani M; Eichmiller FC; McLaughlin WL
    Phys Med Biol; 1990 Mar; 35(3):369-85. PubMed ID: 2320667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical implications of I-125 dosimetry of bone and bone-soft tissue interfaces.
    Yorke ED; Huang YC; Schell MC; Wong R; Ling CC
    Int J Radiat Oncol Biol Phys; 1991 Nov; 21(6):1613-9. PubMed ID: 1938571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.