These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

28 related articles for article (PubMed ID: 33096540)

  • 1. Synthesis of Au@Ag core-shell nanorods with tunable optical properties.
    Miryousefi N; Varmazyad M; Ghasemi F
    Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38865976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the morphology and chemical distribution of Ag atoms in Au rich nanoparticles using electrochemical dealloying.
    Dworzak A; Paciok P; Mahr C; Heggen M; Dosche C; Rosenauer A; Oezaslan M
    Nanoscale; 2024 May; 16(19):9603-9616. PubMed ID: 38683029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seeded Growth of Size-Tunable Au@Ag Core-Shell Nano-Octahedra and Their Yolk-Shell Derivatives for Near Infrared Photothermal Conversion.
    Wan J; Kong H; Li Z; Ma L; Ma Y; Wang Y; Zheng Y
    Langmuir; 2024 May; 40(21):11030-11038. PubMed ID: 38747679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles.
    Kwizera EA; Chaffin E; Shen X; Chen J; Zou Q; Wu Z; Gai Z; Bhana S; O'Connor R; Wang L; Adhikari H; Mishra SR; Wang Y; Huang X
    J Phys Chem C Nanomater Interfaces; 2016 May; 120(19):10530-10546. PubMed ID: 27239246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of multifunctional amorphous metallic shell on crystalline metallic nanoparticles.
    Parakh A; Kiani MT; Lindgren E; Colmenares A; Lee AC; Suzuki Y; Gu XW
    RSC Adv; 2023 Oct; 13(43):30491-30498. PubMed ID: 37860175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core shell hybrids based on noble metal nanoparticles and conjugated polymers: synthesis and characterization.
    Fratoddi I; Venditti I; Battocchio C; Polzonetti G; Cametti C; Russo MV
    Nanoscale Res Lett; 2011 Jan; 6(1):98. PubMed ID: 21711612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core@shell, Au@TiO
    Martínez L; Mayoral A; Espiñeira M; Roman E; Palomares FJ; Huttel Y
    Nanoscale; 2017 May; 9(19):6463-6470. PubMed ID: 28466930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying Thermal Switchability of Liquid Crystalline Nanoparticles by Alkyl Ligands Variation.
    Grzelak J; Żuk M; Tupikowska M; Lewandowski W
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29518916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Separation of Nanoparticle Seed Pseudoisomers via Amplification of Their Crystallographic Differences.
    Cheng Z; Jones MR
    J Am Chem Soc; 2023 Dec; 145(50):27702-27707. PubMed ID: 38055680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capping Layer Determined Self-assembly of Au-Ag Bimetallic Janus Nanoparticles at An Oil/Water Interface by Molecular Dynamics Simulations.
    Zhang C; Jia H; Zhang YF; Du S
    J Phys Chem B; 2023 Nov; 127(44):9543-9549. PubMed ID: 37879071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the Geometry of Core-Shell Structures: How a Shape Changes with Constant Added Thickness.
    Gale CD; Levinger NE
    J Phys Chem B; 2024 Feb; 128(5):1317-1324. PubMed ID: 38288994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Growth of Dendrimer-Coated Gold Nanoparticles: A Solvent-Free Process in Mild Conditions.
    Ulloa JA; Barberá J; Serrano JL
    ACS Omega; 2021 Jan; 6(1):348-357. PubMed ID: 33458486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging 3D chemistry at 1 nm resolution with fused multi-modal electron tomography.
    Schwartz J; Di ZW; Jiang Y; Manassa J; Pietryga J; Qian Y; Cho MG; Rowell JL; Zheng H; Robinson RD; Gu J; Kirilin A; Rozeveld S; Ercius P; Fessler JA; Xu T; Scott M; Hovden R
    Nat Commun; 2024 Apr; 15(1):3555. PubMed ID: 38670945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile and robust synthesis process for the fine control of the chemical composition and core-crystallinity of spherical core-shell Au@Ag nanoparticles.
    Lee S; Portalès H; Walls M; Beaunier P; Goubet N; Tremblay B; Margueritat J; Saviot L; Courty A
    Nanotechnology; 2021 Feb; 32(9):095604. PubMed ID: 33096540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties.
    Samal AK; Polavarapu L; Rodal-Cedeira S; Liz-Marzán LM; Pérez-Juste J; Pastoriza-Santos I
    Langmuir; 2013 Dec; 29(48):15076-82. PubMed ID: 24261458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of fluorescent Au-SiO
    Nallathamby PD; Hopf J; Irimata LE; McGinnity TL; Roeder RK
    J Mater Chem B; 2016 Aug; 4(32):5418-5428. PubMed ID: 32263465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Au@Ag core-shell nanocubes with finely tuned shell thicknesses for surface-enhanced Raman spectroscopic detection.
    Bi C; Yin X; Zhao H
    RSC Adv; 2024 Jun; 14(28):20145-20151. PubMed ID: 38915331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications.
    Wang K; Sun DW; Pu H; Wei Q
    Talanta; 2019 Apr; 195():506-515. PubMed ID: 30625576
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.