These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 33096685)

  • 1. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions.
    Goh PS; Wong KC; Ismail AF
    Membranes (Basel); 2020 Oct; 10(10):. PubMed ID: 33096685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of Liquid Separation Membranes Using Multidimensional Nanomaterials: Revealing the Roles of Dimension Based on Classical Titanium Dioxide.
    Goh PS; Samavati Z; Ismail AF; Ng BC; Abdullah MS; Hilal N
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770409
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal-organic frameworks based membranes for liquid separation.
    Li X; Liu Y; Wang J; Gascon J; Li J; Van der Bruggen B
    Chem Soc Rev; 2017 Nov; 46(23):7124-7144. PubMed ID: 29110013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of Nanocomposite Membranes Containing 0D to 2D Nanofillers for CO₂ Separation: A Review.
    Janakiram S; Ahmadi M; Dai Z; Ansaloni L; Deng L
    Membranes (Basel); 2018 May; 8(2):. PubMed ID: 29757953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanomaterials for designing next-generation membranes and their emerging applications.
    Bora P; Bhuyan C; Borah AR; Hazarika S
    Chem Commun (Camb); 2023 Sep; 59(76):11320-11336. PubMed ID: 37671435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensional Nanofillers in Mixed Matrix Membranes for Pervaporation Separations: A Review.
    Yang G; Xie Z; Cran M; Wu C; Gray S
    Membranes (Basel); 2020 Aug; 10(9):. PubMed ID: 32825195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-enabled gas separation membranes: Advancing sustainability in the energy-environment Nexus.
    Hazarika G; Ingole PG
    Sci Total Environ; 2024 Sep; 944():173264. PubMed ID: 38772493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State-of-the-Art of Polymer/Fullerene C
    Kausar A; Ahmad I; Maaza M; Eisa MH
    Membranes (Basel); 2022 Dec; 13(1):. PubMed ID: 36676834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on organic-inorganic hybrid nanocomposite membranes: a versatile tool to overcome the barriers of forward osmosis.
    Sun W; Shi J; Chen C; Li N; Xu Z; Li J; Lv H; Qian X; Zhao L
    RSC Adv; 2018 Mar; 8(18):10040-10056. PubMed ID: 35540855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational Design of Halloysite Surface Chemistry for High Performance Nanotube-Thin Film Nanocomposite Gas Separation Membranes.
    Chehrazi E; Sharif A; Karimi M
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37527-37537. PubMed ID: 32692915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conducting polymer-inorganic nanocomposite-based gas sensors: a review.
    Yan Y; Yang G; Xu JL; Zhang M; Kuo CC; Wang SD
    Sci Technol Adv Mater; 2021 Jan; 21(1):768-786. PubMed ID: 33488297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Derived Hybrid Carbon Molecular Sieve Membranes with Tailored Ultramicroporosity for Efficient Gas Separation.
    Lee TH; Moghadam F; Jung JG; Kim YJ; Roh JS; Yoo SY; Lee BK; Kim JH; Pinnau I; Park HB
    Small; 2021 Nov; 17(47):e2104698. PubMed ID: 34632705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible, durable, and anti-fouling maghemite copper oxide nanocomposite-based membrane with ultra-high flux and efficiency for oil-in-water emulsions separation.
    Mubarak MF; Selim H; Hawash HB; Hemdan M
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):2297-2313. PubMed ID: 38062214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixed-dimensional membranes: chemistry and structure-property relationships.
    Liu Y; Coppens MO; Jiang Z
    Chem Soc Rev; 2021 Nov; 50(21):11747-11765. PubMed ID: 34499074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Developments in Nanocomposite Membranes Based on Carbon Dots.
    He S; Meng Y; Liu J; Huang D; Mi Y; Ma R
    Polymers (Basel); 2024 May; 16(11):. PubMed ID: 38891428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MXene Materials for Designing Advanced Separation Membranes.
    Karahan HE; Goh K; Zhang CJ; Yang E; Yıldırım C; Chuah CY; Ahunbay MG; Lee J; Tantekin-Ersolmaz ŞB; Chen Y; Bae TH
    Adv Mater; 2020 Jul; 32(29):e1906697. PubMed ID: 32484267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Review on characteristics of biomaterial and nanomaterials based polymeric nanocomposite membranes for seawater treatment application.
    S E; G A; A F I; P S G; Y LT
    Environ Res; 2021 Jun; 197():111177. PubMed ID: 33864792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review.
    Sahu A; Dosi R; Kwiatkowski C; Schmal S; Poler JC
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-based technologies for biogas separations.
    Basu S; Khan AL; Cano-Odena A; Liu C; Vankelecom IF
    Chem Soc Rev; 2010 Feb; 39(2):750-68. PubMed ID: 20111791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Composite 2D Material-Based Pervaporation Membranes for Liquid Separation: A Review.
    Castro-Muñoz R
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.