BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33096859)

  • 1. Human-Robot Interface for Embedding Sliding Adjustable Autonomy Methods.
    Sfair Palar P; de Vargas Terres V; Schneider de Oliveira A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33096859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assisting Operators in Heavy Industrial Tasks: On the Design of an Optimized Cooperative Impedance Fuzzy-Controller With Embedded Safety Rules.
    Roveda L; Haghshenas S; Caimmi M; Pedrocchi N; Molinari Tosatti L
    Front Robot AI; 2019; 6():75. PubMed ID: 33501090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of two adjustable-autonomy models on the scalability of single-human/multiple-robot teams for exploration missions.
    Valero-Gomez A; de la Puente P; Hernando M
    Hum Factors; 2011 Dec; 53(6):703-16. PubMed ID: 22235531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Wearable IMU System for Flexible Teleoperation of a Collaborative Industrial Robot.
    Škulj G; Vrabič R; Podržaj P
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of task decision autonomy on physical ergonomics and robot performances in an industrial human-robot collaboration scenario.
    Pantano M; Yang Q; Blumberg A; Reisch R; Hauser T; Lutz B; Regulin D; Kamps T; Traganos K; Lee D
    Front Robot AI; 2022; 9():943261. PubMed ID: 36237843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extended Control with Hybrid Gaze-BCI for Multi-Robot System under Hands-occupied Dual-tasking.
    Zeng H; Shen Y; Sun D; Hu X; Wen P; Liu J; Song A
    IEEE Trans Neural Syst Rehabil Eng; 2023 Jan; PP():. PubMed ID: 37018580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial Trajectory Tracking of Wall-Climbing Robot on Cylindrical Tank Surface Using Backstepping Sliding-Mode Control.
    Xue J; Chen J; Stancu A; Wang X; Li J
    Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of three different techniques for camera and motion control of a teleoperated robot.
    Doisy G; Ronen A; Edan Y
    Appl Ergon; 2017 Jan; 58():527-534. PubMed ID: 27181096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Confidence-Based Shared Control Strategy for the Smart Tissue Autonomous Robot (STAR).
    Saeidi H; Opfermann JD; Kam M; Raghunathan S; Leonard S; Krieger A
    Rep U S; 2018 Oct; 2018():1268-1275. PubMed ID: 31475075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Balance Control of Double Gyros Unicycle Robot Based on Sliding Mode Controller.
    Zhang Y; Jin H; Zhao J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting fuzzy control rules from experimental human operator data.
    Zapata GA; Kawakami R; Galvao H; Yoneyama T
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(3):398-406. PubMed ID: 18252313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-tuning fuzzy PID-nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators.
    Van M; Do XP; Mavrovouniotis M
    ISA Trans; 2020 Jan; 96():60-68. PubMed ID: 31262510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Improved Fuzzy Brain Emotional Learning Model Network Controller for Humanoid Robots.
    Fang W; Chao F; Lin CM; Yang L; Shang C; Zhou C
    Front Neurorobot; 2019; 13():2. PubMed ID: 30778294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative study of a learning fuzzy PID controller and a self-tuning controller.
    Kazemian HB
    ISA Trans; 2001; 40(3):245-53. PubMed ID: 11515942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive fuzzy terminal sliding mode controller for linear systems with mismatched time-varying uncertainties.
    Tao CW; Taur JS; Chan ML
    IEEE Trans Syst Man Cybern B Cybern; 2004 Feb; 34(1):255-62. PubMed ID: 15369068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of position repeatability of a human operator and an industrial manipulating robot.
    Zupancic J; Bajd T
    Comput Biol Med; 1998 Jul; 28(4):415-21. PubMed ID: 9805201
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Haptic Shared Autonomy With Partial Orientation Regulation for DoF Deficiency in Remote Side.
    Li G; Caponetto F; Wu X; Sarakoglou I; Tsagarakis NG
    IEEE Trans Haptics; 2023; 16(1):86-95. PubMed ID: 37030691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An adaptive fuzzy controller based on sliding mode for robot manipulators.
    Sun FC; Sun ZQ; Feng G
    IEEE Trans Syst Man Cybern B Cybern; 1999; 29(5):661-7. PubMed ID: 18252345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An operator interface for teleprogramming employing synthetic fixtures.
    Sayers CP; Paul RP
    Presence (Camb); 1994; 3(4):309-20. PubMed ID: 11539344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-robot collaborated path planning for bevel-tip needle steering in simulated human environment.
    Jing Xiong ; Zeyang Xia ; Yangzhou Gan
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5672-5675. PubMed ID: 28269542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.