These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33096901)

  • 1. A Review of Potential Impacts of Climate Change on Coffee Cultivation and Mycotoxigenic Fungi.
    Adhikari M; Isaac EL; Paterson RRM; Maslin MA
    Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33096901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia.
    Yazid SNE; Jinap S; Ismail SI; Magan N; Samsudin NIP
    Compr Rev Food Sci Food Saf; 2020 Mar; 19(2):643-669. PubMed ID: 33325175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate Change and Effects on Molds and Mycotoxins.
    Zingales V; Taroncher M; Martino PA; Ruiz MJ; Caloni F
    Toxins (Basel); 2022 Jun; 14(7):. PubMed ID: 35878185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brazilian Coffee Production and the Future Microbiome and Mycotoxin Profile Considering the Climate Change Scenario.
    Dos Santos DG; Coelho CCS; Ferreira ABR; Freitas-Silva O
    Microorganisms; 2021 Apr; 9(4):. PubMed ID: 33923588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine.
    Paterson RRM; Venâncio A; Lima N; Guilloux-Bénatier M; Rousseaux S
    Food Res Int; 2018 Jan; 103():478-491. PubMed ID: 29389638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage.
    Magrach A; Ghazoul J
    PLoS One; 2015; 10(7):e0133071. PubMed ID: 26177201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing climate, shifting mycotoxins: A comprehensive review of climate change impact on mycotoxin contamination.
    Casu A; Camardo Leggieri M; Toscano P; Battilani P
    Compr Rev Food Sci Food Saf; 2024 Mar; 23(2):e13323. PubMed ID: 38477222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fungal and mycotoxin contamination of coffee beans in Benguet province, Philippines.
    Culliao AG; Barcelo JM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(2):250-60. PubMed ID: 25534333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxigenic Fungi and Mycotoxins in a Climate Change Scenario: Ecology, Genomics, Distribution, Prediction and Prevention of the Risk.
    Perrone G; Ferrara M; Medina A; Pascale M; Magan N
    Microorganisms; 2020 Sep; 8(10):. PubMed ID: 33003323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Climate Change on Areas Suitable for Maize Cultivation and Aflatoxin Contamination in Europe.
    Focker M; van Eupen M; Verweij P; Liu C; van Haren C; van der Fels-Klerx HJ
    Toxins (Basel); 2023 Oct; 15(10):. PubMed ID: 37888630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Not so robust: Robusta coffee production is highly sensitive to temperature.
    Kath J; Byrareddy VM; Craparo A; Nguyen-Huy T; Mushtaq S; Cao L; Bossolasco L
    Glob Chang Biol; 2020 Jun; 26(6):3677-3688. PubMed ID: 32223007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycotoxigenic Fungi and Mycotoxins in Agricultural Crop Commodities in the Philippines: A Review.
    Balendres MAO; Karlovsky P; Cumagun CJR
    Foods; 2019 Jul; 8(7):. PubMed ID: 31288486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-harvest control strategies: minimizing mycotoxins in the food chain.
    Magan N; Aldred D
    Int J Food Microbiol; 2007 Oct; 119(1-2):131-9. PubMed ID: 17764773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermophilic Fungi to Dominate Aflatoxigenic/Mycotoxigenic Fungi on Food under Global Warming.
    Paterson RR; Lima N
    Int J Environ Res Public Health; 2017 Feb; 14(2):. PubMed ID: 28218685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia.
    Milićević D; Petronijević R; Petrović Z; Đjinović-Stojanović J; Jovanović J; Baltić T; Janković S
    J Sci Food Agric; 2019 Aug; 99(11):5202-5210. PubMed ID: 31032967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Least concern to endangered: Applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee.
    Moat J; Gole TW; Davis AP
    Glob Chang Biol; 2019 Feb; 25(2):390-403. PubMed ID: 30650240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature contributes to host specialization of coffee wilt disease (Fusarium xylarioides) on arabica and robusta coffee crops.
    Zhang X; Peck LD; Flood J; Ryan MJ; Barraclough TG
    Sci Rep; 2023 Jun; 13(1):9327. PubMed ID: 37291178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal contamination in green coffee beans samples: A public health concern.
    Viegas C; Pacífico C; Faria T; de Oliveira AC; Caetano LA; Carolino E; Gomes AQ; Viegas S
    J Toxicol Environ Health A; 2017; 80(13-15):719-728. PubMed ID: 28548622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling of pollination services and coffee suitability under climate change.
    Imbach P; Fung E; Hannah L; Navarro-Racines CE; Roubik DW; Ricketts TH; Harvey CA; Donatti CI; Läderach P; Locatelli B; Roehrdanz PR
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10438-10442. PubMed ID: 28893985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate risks and vulnerabilities of the Arabica coffee in Brazil under current and future climates considering new CMIP6 models.
    Dias CG; Martins FB; Martins MA
    Sci Total Environ; 2024 Jan; 907():167753. PubMed ID: 37832692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.