BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3309707)

  • 1. Central dopamine-peptide interactions: electrophysiological studies.
    Bunney BS
    Neuropharmacology; 1987 Jul; 26(7B):1003-9. PubMed ID: 3309707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuroactive peptides exist in the midbrain dopaminergic neurons that contain calbindin-D28k.
    German DC; Liang CL
    Neuroreport; 1993 May; 4(5):491-4. PubMed ID: 8513124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholecystokinin peptides, dopamine and schizophrenia--a review.
    Nair NP; Lal S; Bloom DM
    Prog Neuropsychopharmacol Biol Psychiatry; 1985; 9(5-6):515-24. PubMed ID: 2868491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of peptide- and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: immunohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine beta-hydroxylase.
    Schultzberg M; Hökfelt T; Nilsson G; Terenius L; Rehfeld JF; Brown M; Elde R; Goldstein M; Said S
    Neuroscience; 1980; 5(4):689-744. PubMed ID: 6156425
    [No Abstract]   [Full Text] [Related]  

  • 5. Dopamine-dependent postnatal development of enkephalin and tachykinin neurons of rat basal ganglia.
    Sivam SP; Krause JE; Breese GR; Hong JS
    J Neurochem; 1991 May; 56(5):1499-508. PubMed ID: 1707436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrophysiological actions of neurotensin in the central nervous system.
    Stowe ZN; Nemeroff CB
    Life Sci; 1991; 49(14):987-1002. PubMed ID: 1890928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substance P and cholecystokinin regulate neurochemical responses to cocaine and methamphetamine in the striatum.
    Loonam TM; Noailles PA; Yu J; Zhu JP; Angulo JA
    Life Sci; 2003 Jun; 73(6):727-39. PubMed ID: 12801594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intramembrane interactions between neurotensin receptors and dopamine D2 receptors as a major mechanism for the neuroleptic-like action of neurotensin.
    Fuxe K; Von Euler G; Agnati LF; Merlo Pich E; O'Connor WT; Tanganelli S; Li XM; Tinner B; Cintra A; Carani C
    Ann N Y Acad Sci; 1992; 668():186-204. PubMed ID: 1361113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotensin and dopamine interactions.
    Binder EB; Kinkead B; Owens MJ; Nemeroff CB
    Pharmacol Rev; 2001 Dec; 53(4):453-86. PubMed ID: 11734615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presence of somatostatin or neurotensin in lateral septal dopaminergic axon terminals of distinct hypothalamic and midbrain origins: convergence on the somatospiny neurons.
    Jakab RL; Leranth C
    Exp Brain Res; 1993; 92(3):420-30. PubMed ID: 7681010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of neuropeptides in the limbic system of the rat: the amygdaloid complex.
    Roberts GW; Woodhams PL; Polak JM; Crow TJ
    Neuroscience; 1982 Jan; 7(1):99-131. PubMed ID: 6176906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiological effects of diphenylpyrazolidinone cholecystokinin-B and cholecystokinin-A antagonists on midbrain dopamine neurons.
    Rasmussen K; Czachura JF; Stockton ME; Howbert JJ
    J Pharmacol Exp Ther; 1993 Jan; 264(1):480-8. PubMed ID: 8423546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bidirectional regulation of dopamine D2 and neurotensin NTS1 receptors in dopamine neurons.
    Jomphe C; Lemelin PL; Okano H; Kobayashi K; Trudeau LE
    Eur J Neurosci; 2006 Nov; 24(10):2789-800. PubMed ID: 17116165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The electrophysiological effects of neurotensin on spontaneously active neurons in the nucleus accumbens: an in vivo study.
    Stowe ZN; Landry JC; Tang Z; Owens MJ; Kinkead B; Nemeroff CB
    Synapse; 2005 Dec; 58(3):165-72. PubMed ID: 16108007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of neuropeptides in the limbic system of the rat: the hippocampus.
    Roberts GW; Woodhams PL; Polak JM; Crow TJ
    Neuroscience; 1984 Jan; 11(1):35-77. PubMed ID: 6200800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of neuropeptide release.
    Iversen LL; Lee CM; Gilbert RF; Hunt S; Emson PC
    Proc R Soc Lond B Biol Sci; 1980 Oct; 210(1178):91-111. PubMed ID: 6159655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuropeptides: metabolism to bioactive fragments and the pharmacology of their receptors.
    Hallberg M
    Med Res Rev; 2015 May; 35(3):464-519. PubMed ID: 24894913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Song in an Affiliative Context Relates to the Neural Expression of Dopamine- and Neurotensin-Related Genes in Male European Starlings.
    Merullo DP; Angyal CS; Stevenson SA; Riters LV
    Brain Behav Evol; 2016; 88(2):81-92. PubMed ID: 27614972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo sulfation of cholecystokinin octapeptide. Possible interactions of the two forms of cholecystokinin with dopamine in the brain.
    Penke B; Kovács GL; Zsigó J; Kádár T; Szabó G; Kovács K; Telegdy G
    Ann N Y Acad Sci; 1985; 448():293-305. PubMed ID: 2862826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The immunohistochemical localization of nine peptides in the sacral parasympathetic nucleus and the dorsal gray commissure in rat spinal cord.
    Sasek CA; Seybold VS; Elde RP
    Neuroscience; 1984 Jul; 12(3):855-73. PubMed ID: 6206440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.