BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33097441)

  • 1. G6PD: A hub for metabolic reprogramming and redox signaling in cancer.
    Yang HC; Stern A; Chiu DT
    Biomed J; 2021 Jun; 44(3):285-292. PubMed ID: 33097441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer.
    Yang HC; Wu YH; Yen WC; Liu HY; Hwang TL; Stern A; Chiu DT
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of global metabolic responses of glucose-6-phosphate dehydrogenase-deficient hepatoma cells to diamide-induced oxidative stress.
    Ho HY; Cheng ML; Shiao MS; Chiu DT
    Free Radic Biol Med; 2013 Jan; 54():71-84. PubMed ID: 23142419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteome-wide dysregulation by glucose-6-phosphate dehydrogenase (G6PD) reveals a novel protective role for G6PD in aflatoxin B₁-mediated cytotoxicity.
    Lin HR; Wu CC; Wu YH; Hsu CW; Cheng ML; Chiu DT
    J Proteome Res; 2013 Jul; 12(7):3434-48. PubMed ID: 23742107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SIRT5 promotes IDH2 desuccinylation and G6PD deglutarylation to enhance cellular antioxidant defense.
    Zhou L; Wang F; Sun R; Chen X; Zhang M; Xu Q; Wang Y; Wang S; Xiong Y; Guan KL; Yang P; Yu H; Ye D
    EMBO Rep; 2016 Jun; 17(6):811-22. PubMed ID: 27113762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells.
    Torres-Ramírez N; Baiza-Gutman LA; García-Macedo R; Ortega-Camarillo C; Contreras-Ramos A; Medina-Navarro R; Cruz M; Ibáñez-Hernández MÁ; Díaz-Flores M
    Life Sci; 2013 Dec; 93(25-26):975-85. PubMed ID: 24184296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase--from oxidative stress to cellular functions and degenerative diseases.
    Ho HY; Cheng ML; Chiu DT
    Redox Rep; 2007; 12(3):109-18. PubMed ID: 17623517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose-6-phosphate dehydrogenase overexpression decreases endothelial cell oxidant stress and increases bioavailable nitric oxide.
    Leopold JA; Zhang YY; Scribner AW; Stanton RC; Loscalzo J
    Arterioscler Thromb Vasc Biol; 2003 Mar; 23(3):411-7. PubMed ID: 12615686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid phosphorylation of glucose-6-phosphate dehydrogenase by casein kinase 2 sustains redox homeostasis under ionizing radiation.
    Hao Y; Ren T; Huang X; Li M; Lee JH; Chen Q; Liu R; Tang Q
    Redox Biol; 2023 Sep; 65():102810. PubMed ID: 37478541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G6PD-mediated increase in de novo NADP
    Zhang Y; Xu Y; Lu W; Li J; Yu S; Brown EJ; Stanger BZ; Rabinowitz JD; Yang X
    Sci Adv; 2022 Jul; 8(29):eabo0404. PubMed ID: 35857842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress.
    Wang YP; Zhou LS; Zhao YZ; Wang SW; Chen LL; Liu LX; Ling ZQ; Hu FJ; Sun YP; Zhang JY; Yang C; Yang Y; Xiong Y; Guan KL; Ye D
    EMBO J; 2014 Jun; 33(12):1304-20. PubMed ID: 24769394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose-6-Phosphate Dehydrogenase, Redox Homeostasis and Embryogenesis.
    Chen PH; Tjong WY; Yang HC; Liu HY; Stern A; Chiu DT
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells.
    Lee SM; Koh HJ; Park DC; Song BJ; Huh TL; Park JW
    Free Radic Biol Med; 2002 Jun; 32(11):1185-96. PubMed ID: 12031902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inability to maintain GSH pool in G6PD-deficient red cells causes futile AMPK activation and irreversible metabolic disturbance.
    Tang HY; Ho HY; Wu PR; Chen SH; Kuypers FA; Cheng ML; Chiu DT
    Antioxid Redox Signal; 2015 Mar; 22(9):744-59. PubMed ID: 25556665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review).
    Li R; Wang W; Yang Y; Gu C
    Oncol Rep; 2020 Dec; 44(6):2325-2336. PubMed ID: 33125150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salt-Inducible Kinase 3 Provides Sugar Tolerance by Regulating NADPH/NADP
    Teesalu M; Rovenko BM; Hietakangas V
    Curr Biol; 2017 Feb; 27(3):458-464. PubMed ID: 28132818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two high-rate pentose-phosphate pathways in cancer cells.
    Cossu V; Bonanomi M; Bauckneht M; Ravera S; Righi N; Miceli A; Morbelli S; Orengo AM; Piccioli P; Bruno S; Gaglio D; Sambuceti G; Marini C
    Sci Rep; 2020 Dec; 10(1):22111. PubMed ID: 33335166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose-6-phosphate dehydrogenase-deficient cells show an increased propensity for oxidant-induced senescence.
    Cheng ML; Ho HY; Wu YH; Chiu DT
    Free Radic Biol Med; 2004 Mar; 36(5):580-91. PubMed ID: 14980702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSPB1 Enhances SIRT2-Mediated G6PD Activation and Promotes Glioma Cell Proliferation.
    Ye H; Huang H; Cao F; Chen M; Zheng X; Zhan R
    PLoS One; 2016; 11(10):e0164285. PubMed ID: 27711253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.