These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33097723)

  • 1. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures.
    Lim K; Pan K; Yu Z; Xiao RH
    Nat Commun; 2020 Oct; 11(1):5353. PubMed ID: 33097723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification and adulteration detection of vegetable oils based on fatty acid profiles.
    Zhang L; Li P; Sun X; Wang X; Xu B; Wang X; Ma F; Zhang Q; Ding X
    J Agric Food Chem; 2014 Aug; 62(34):8745-51. PubMed ID: 25078260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of some adulteration detection techniques of edible oils.
    Salah WA; Nofal M
    J Sci Food Agric; 2021 Feb; 101(3):811-819. PubMed ID: 32833235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The application of machine-learning and Raman spectroscopy for the rapid detection of edible oils type and adulteration.
    Zhao H; Zhan Y; Xu Z; John Nduwamungu J; Zhou Y; Powers R; Xu C
    Food Chem; 2022 Mar; 373(Pt B):131471. PubMed ID: 34749090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Determination of undecanoic acid and 13-methyl-tetradecanoic acid connected to the glyceride with internal standard method and its application to the identification of adulteration of illegal cooking oil].
    Jin J; Chen J; Tian Y; Zou L; Wang L; Li F
    Se Pu; 2013 Jun; 31(6):556-60. PubMed ID: 24063195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intelligent analysis of excitation-emission matrix fluorescence fingerprint to identify and quantify adulteration in camellia oil based on machine learning.
    Chen AQ; Wu HL; Wang T; Wang XZ; Sun HB; Yu RQ
    Talanta; 2023 Jan; 251():123733. PubMed ID: 35940112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational estimation of soybean oil adulteration in Nepalese mustard seed oil based on fatty acid composition.
    Shrestha K; De Meulenaer B
    Commun Agric Appl Biol Sci; 2011; 76(1):211-4. PubMed ID: 21539233
    [No Abstract]   [Full Text] [Related]  

  • 8. Self-organizing maps and learning vector quantization networks as tools to identify vegetable oils.
    Torrecilla JS; Rojo E; Oliet M; Domínguez JC; Rodríguez F
    J Agric Food Chem; 2009 Apr; 57(7):2763-9. PubMed ID: 19267437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR.
    Gouilleux B; Marchand J; Charrier B; Remaud GS; Giraudeau P
    Food Chem; 2018 Apr; 244():153-158. PubMed ID: 29120763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of extra virgin olive oil adulteration with lampante olive oil and refined olive oil using nuclear magnetic resonance spectroscopy and multivariate statistical analysis.
    Fragaki G; Spyros A; Siragakis G; Salivaras E; Dais P
    J Agric Food Chem; 2005 Apr; 53(8):2810-6. PubMed ID: 15826023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs).
    Liu Y; Yao L; Xia Z; Gao Y; Gong Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118973. PubMed ID: 33017793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Discrimination of Edible Oil Type, Oxidation, and Adulteration by Liquid Interfacial Surface-Enhanced Raman Spectroscopy.
    Du S; Su M; Jiang Y; Yu F; Xu Y; Lou X; Yu T; Liu H
    ACS Sens; 2019 Jul; 4(7):1798-1805. PubMed ID: 31251024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of refined olive oil adulteration with refined hazelnut oil by employing NMR spectroscopy and multivariate statistical analysis.
    Agiomyrgianaki A; Petrakis PV; Dais P
    Talanta; 2010 Mar; 80(5):2165-71. PubMed ID: 20152467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Barcode DNA length polymorphisms vs fatty acid profiling for adulteration detection in olive oil.
    Uncu AT; Uncu AO; Frary A; Doganlar S
    Food Chem; 2017 Apr; 221():1026-1033. PubMed ID: 27979055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.
    Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy].
    Ding QZ; Liu LL; Wu YW; Li BN; Ouyang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2690-5. PubMed ID: 25739209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics.
    Yang Y; Ferro MD; Cavaco I; Liang Y
    J Agric Food Chem; 2013 Apr; 61(15):3693-702. PubMed ID: 23528132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins.
    Jović O
    Food Chem; 2016 Dec; 213():791-798. PubMed ID: 27451249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and evaluation of multiple adulteration detection of camellia oil by mixture design.
    Dou X; Zhang L; Chen Z; Wang X; Ma F; Yu L; Mao J; Li P
    Food Chem; 2023 Apr; 406():135050. PubMed ID: 36462349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatty acids in Chinese edible oils: value of direct analysis as a basis for labeling.
    Wallingford JC; Yuhas R; Du S; Zhai F; Popkin BM
    Food Nutr Bull; 2004 Dec; 25(4):330-6. PubMed ID: 15646310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.