These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33097737)

  • 1. A numerical study of pre-polarisation switching in ultra-low field magnetic resonance imaging using dynamic permanent magnet arrays.
    Pellicer-Guridi R; Vogel MW; Vegh V; Su J; Rosen MS; Reutens DC
    Sci Rep; 2020 Oct; 10(1):18141. PubMed ID: 33097737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.
    Vogel MW; Giorni A; Vegh V; Pellicer-Guridi R; Reutens DC
    PLoS One; 2016; 11(6):e0157040. PubMed ID: 27271886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic nuclear polarisation of liquids at one microtesla using circularly polarised RF with application to millimetre resolution MRI.
    Hilschenz I; Oh S; Lee SJ; Yu KK; Hwang SM; Kim K; Shim JH
    J Magn Reson; 2019 Aug; 305():138-145. PubMed ID: 31280186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Spatial encoding with permanent magnets for ultra-low field magnetic resonance imaging.
    Vogel MW; Guridi RP; Su J; Vegh V; Reutens DC
    Sci Rep; 2019 Feb; 9(1):1522. PubMed ID: 30728414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm.
    Cooley CZ; Haskell MW; Cauley SF; Sappo C; Lapierre CD; Ha CG; Stockmann JP; Wald LL
    IEEE Trans Magn; 2018 Jan; 54(1):. PubMed ID: 29749974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.
    McGinley JV; Ristic M; Young IR
    J Magn Reson; 2016 Oct; 271():60-7. PubMed ID: 27552556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
    Danieli E; Perlo J; Blümich B; Casanova F
    Phys Rev Lett; 2013 May; 110(18):180801. PubMed ID: 23683185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and experimental validation of Unilateral Linear Halbach magnet arrays for single-sided magnetic resonance.
    Bashyam A; Li M; Cima MJ
    J Magn Reson; 2018 Jul; 292():36-43. PubMed ID: 29763794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced capture of magnetic microbeads using combination of reduced magnetic field strength and sequentially switched electroosmotic flow--a numerical study.
    Das D; Al-Rjoub MF; Banerjee RK
    J Biomech Eng; 2015 May; 137(5):051008. PubMed ID: 25662030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On a ghost artefact in ultra low field magnetic resonance relaxation imaging.
    Volegov P; Schultz L; Espy M
    J Magn Reson; 2014 Jun; 243():98-106. PubMed ID: 24792962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.
    Sarwar A; Nemirovski A; Shapiro B
    J Magn Magn Mater; 2012 Mar; 324(5):742-754. PubMed ID: 23335834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth's field NMR flow meter: preliminary quantitative measurements.
    Fridjonsson EO; Stanwix PL; Johns ML
    J Magn Reson; 2014 Aug; 245():110-5. PubMed ID: 25033240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays.
    Yao N; Yan L; Wang T; Wang S
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29156577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient concomitant and remanence field artifact reduction in ultra-low-field MRI using a frequency-space formulation.
    Hsu YC; Vesanen PT; Nieminen JO; Zevenhoven KC; Dabek J; Parkkonen L; Chern IL; Ilmoniemi RJ; Lin FH
    Magn Reson Med; 2014 Mar; 71(3):955-65. PubMed ID: 23670955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A readout magnet for prepolarized MRI.
    Morgan P; Conolly S; Scott G; Macovski A
    Magn Reson Med; 1996 Oct; 36(4):527-36. PubMed ID: 8892203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Measurements of the flux densities of static magnetic fields generated by two types of dental magnetic attachments and their retentive forces].
    Xu C; Chao YL; Du L; Yang L
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2004 May; 35(3):412-5. PubMed ID: 15181852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution NMR imaging using a high field yokeless permanent magnet.
    Kose K; Haishi T
    Magn Reson Med Sci; 2011; 10(3):159-67. PubMed ID: 21959998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving resolution of robotic capsule locomotion using dynamic electromagnetic field.
    Alsunaydih FN; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():219-222. PubMed ID: 28268316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A predictive algorithm for spot position corrections after fast energy switching in proton pencil beam scanning.
    Psoroulas S; Bula C; Actis O; Weber DC; Meer D
    Med Phys; 2018 Nov; 45(11):4806-4815. PubMed ID: 30273965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.