These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 33097794)

  • 1. CRY-dependent plasticity of tetrad presynaptic sites in the visual system of Drosophila at the morning peak of activity and sleep.
    Damulewicz M; Woźnicka O; Jasińska M; Pyza E
    Sci Rep; 2020 Oct; 10(1):18161. PubMed ID: 33097794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circadian control of dendrite morphology in the visual system of Drosophila melanogaster.
    Weber P; Kula-Eversole E; Pyza E
    PLoS One; 2009; 4(1):e4290. PubMed ID: 19173003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian expression of the presynaptic active zone protein Bruchpilot in the lamina of Drosophila melanogaster.
    Górska-Andrzejak J; Makuch R; Stefan J; Görlich A; Semik D; Pyza E
    Dev Neurobiol; 2013 Jan; 73(1):14-26. PubMed ID: 22589214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BRP-170 and BRP190 isoforms of Bruchpilot protein differentially contribute to the frequency of synapses and synaptic circadian plasticity in the visual system of Drosophila.
    Woźnicka O; Görlich A; Sigrist S; Pyza E
    Front Cell Neurosci; 2015; 9():238. PubMed ID: 26175667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian plasticity in photoreceptor cells controls visual coding efficiency in Drosophila melanogaster.
    Barth M; Schultze M; Schuster CM; Strauss R
    PLoS One; 2010 Feb; 5(2):e9217. PubMed ID: 20169158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila.
    Klarsfeld A; Malpel S; Michard-Vanhée C; Picot M; Chélot E; Rouyer F
    J Neurosci; 2004 Feb; 24(6):1468-77. PubMed ID: 14960620
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks.
    Ivanchenko M; Stanewsky R; Giebultowicz JM
    J Biol Rhythms; 2001 Jun; 16(3):205-15. PubMed ID: 11407780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social Experience Is Sufficient to Modulate Sleep Need of Drosophila without Increasing Wakefulness.
    Lone SR; Potdar S; Srivastava M; Sharma VK
    PLoS One; 2016; 11(3):e0150596. PubMed ID: 26938057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
    Fogle KJ; Parson KG; Dahm NA; Holmes TC
    Science; 2011 Mar; 331(6023):1409-13. PubMed ID: 21385718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster.
    Hamanaka Y; Meinertzhagen IA
    J Comp Neurol; 2010 Apr; 518(7):1133-55. PubMed ID: 20127822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-shifting the fruit fly clock without cryptochrome.
    Kistenpfennig C; Hirsh J; Yoshii T; Helfrich-Förster C
    J Biol Rhythms; 2012 Apr; 27(2):117-25. PubMed ID: 22476772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRYPTOCHROME mediates behavioral executive choice in response to UV light.
    Baik LS; Fogle KJ; Roberts L; Galschiodt AM; Chevez JA; Recinos Y; Nguy V; Holmes TC
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):776-781. PubMed ID: 28062690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Tug-of-War between Cryptochrome and the Visual System Allows the Adaptation of Evening Activity to Long Photoperiods in Drosophila melanogaster.
    Kistenpfennig C; Nakayama M; Nihara R; Tomioka K; Helfrich-Förster C; Yoshii T
    J Biol Rhythms; 2018 Feb; 33(1):24-34. PubMed ID: 29179610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exquisite light sensitivity of Drosophila melanogaster cryptochrome.
    Vinayak P; Coupar J; Hughes SE; Fozdar P; Kilby J; Garren E; Yoshii T; Hirsh J
    PLoS Genet; 2013; 9(7):e1003615. PubMed ID: 23874218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The clock input to the first optic neuropil of Drosophila melanogaster expressing neuronal circadian plasticity.
    Damulewicz M; Pyza E
    PLoS One; 2011; 6(6):e21258. PubMed ID: 21760878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Neural Network Underlying Circadian Entrainment and Photoperiodic Adjustment of Sleep and Activity in Drosophila.
    Schlichting M; Menegazzi P; Lelito KR; Yao Z; Buhl E; Dalla Benetta E; Bahle A; Denike J; Hodge JJ; Helfrich-Förster C; Shafer OT
    J Neurosci; 2016 Aug; 36(35):9084-96. PubMed ID: 27581451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochrome Is a Regulator of Synaptic Plasticity in the Visual System of
    Damulewicz M; Mazzotta GM; Sartori E; Rosato E; Costa R; Pyza EM
    Front Mol Neurosci; 2017; 10():165. PubMed ID: 28611590
    [No Abstract]   [Full Text] [Related]  

  • 20. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons.
    Hofbauer B; Zandawala M; Reinhard N; Rieger D; Werner C; Evers JF; Wegener C
    Eur J Neurosci; 2024 May; 59(10):2665-2685. PubMed ID: 38414155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.