These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33097806)

  • 21. Enhanced healing of rabbit segmental radius defects with surface-coated calcium phosphate cement/bone morphogenetic protein-2 scaffolds.
    Wu Y; Hou J; Yin M; Wang J; Liu C
    Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():326-35. PubMed ID: 25280712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration.
    Hasan ML; Kim B; Padalhin AR; Faruq O; Sultana T; Lee BT
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109775. PubMed ID: 31349455
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Load-Bearing Bone Defects.
    Li JJ; Dunstan CR; Entezari A; Li Q; Steck R; Saifzadeh S; Sadeghpour A; Field JR; Akey A; Vielreicher M; Friedrich O; Roohani-Esfahani SI; Zreiqat H
    Adv Healthc Mater; 2019 Apr; 8(8):e1801298. PubMed ID: 30773833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and in vivo evaluation of a silicate-based composite bone cement.
    Ma B; Huan Z; Xu C; Ma N; Zhu H; Zhong J; Chang J
    J Biomater Appl; 2017 Aug; 32(2):257-264. PubMed ID: 28622750
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo degradation and new bone formation of calcium phosphate cement-gelatin powder composite related to macroporosity after in situ gelatin degradation.
    Kasuya A; Sobajima S; Kinoshita M
    J Orthop Res; 2012 Jul; 30(7):1103-11. PubMed ID: 22213166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mineralized collagen/Mg-Ca alloy combined scaffolds with improved biocompatibility for enhanced bone response following tooth extraction.
    Yu Q; Wang C; Yang J; Guo C; Zhang S
    Biomed Mater; 2018 Aug; 13(6):065008. PubMed ID: 30122665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds.
    Roohani-Esfahani SI; Dunstan CR; Davies B; Pearce S; Williams R; Zreiqat H
    Acta Biomater; 2012 Nov; 8(11):4162-72. PubMed ID: 22842031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of bio-inspired bioglass/collagen/magnesium composites on bone repair.
    Gabbai-Armelin PR; Wilian Kido H; Fernandes KR; Fortulan CA; Muniz Renno AC
    J Biomater Appl; 2019 Aug; 34(2):261-272. PubMed ID: 31027447
    [No Abstract]   [Full Text] [Related]  

  • 30. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strontium ion reinforced bioceramic scaffold for load bearing bone regeneration.
    Prabha RD; Ding M; Bollen P; Ditzel N; Varma HK; Nair PD; Kassem M
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110427. PubMed ID: 32228983
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of scaffold incorporated with nanobioglass encapsulated in chitosan/chondroitin sulfate complex for bone tissue engineering.
    Singh BN; Veeresh V; Mallick SP; Sinha S; Rastogi A; Srivastava P
    Int J Biol Macromol; 2020 Jun; 153():1-16. PubMed ID: 32084482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of calcium phosphate coating and rhBMP-2 on bone regeneration in rabbit calvaria using poly(propylene fumarate) scaffolds.
    Dadsetan M; Guda T; Runge MB; Mijares D; LeGeros RZ; LeGeros JP; Silliman DT; Lu L; Wenke JC; Brown Baer PR; Yaszemski MJ
    Acta Biomater; 2015 May; 18():9-20. PubMed ID: 25575855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects.
    Bonithon R; Kao AP; Fernández MP; Dunlop JN; Blunn GW; Witte F; Tozzi G
    Acta Biomater; 2021 Jun; 127():338-352. PubMed ID: 33831571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications.
    Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z
    Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone.
    Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C
    Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinforced Portland cement porous scaffolds for load-bearing bone tissue engineering applications.
    Higuita-Castro N; Gallego-Perez D; Pelaez-Vargas A; García Quiroz F; Posada OM; López LE; Sarassa CA; Agudelo-Florez P; Monteiro FJ; Litsky AS; Hansford DJ
    J Biomed Mater Res B Appl Biomater; 2012 Feb; 100(2):501-7. PubMed ID: 22121151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unique microstructural design of ceramic scaffolds for bone regeneration under load.
    Roohani-Esfahani SI; Dunstan CR; Li JJ; Lu Z; Davies B; Pearce S; Field J; Williams R; Zreiqat H
    Acta Biomater; 2013 Jun; 9(6):7014-24. PubMed ID: 23467040
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive fluorcanasite reinforced magnesium alloy-based porous bio-nanocomposite scaffolds with tunable mechanical properties.
    Garimella A; M R; Ghosh SB; Bandyopadhyay-Ghosh S; Agrawal AK
    J Biomed Mater Res B Appl Biomater; 2023 Feb; 111(2):463-477. PubMed ID: 36208413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of mechanical strength and bone regeneration ability of 3D printed kagome-structure scaffold using rabbit calvarial defect model.
    Lee SH; Lee KG; Hwang JH; Cho YS; Lee KS; Jeong HJ; Park SH; Park Y; Cho YS; Lee BK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():949-959. PubMed ID: 30813102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.