These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33097806)

  • 41. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration.
    Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR
    Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Porous magnesium-based scaffolds for tissue engineering.
    Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [In vivo experiment of porous bioactive bone cement modified by bioglass and chitosan].
    Li Y; Lei W; Wang Z; Zhang Y; Niu E; Yu L; Wu J; Zang Y; Liu Z; Wu Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Mar; 27(3):320-5. PubMed ID: 23672134
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of osteoconductive activity of modified potassium fluorrichterite glass-ceramics by immersion in simulated body fluid.
    Bhakta S; Pattanayak DK; Takadama H; Kokubo T; Miller CA; Mirsaneh M; Reaney IM; Brook I; van Noort R; Hatton PV
    J Mater Sci Mater Med; 2010 Nov; 21(11):2979-88. PubMed ID: 20725768
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics.
    Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J
    Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect.
    Lai Y; Li Y; Cao H; Long J; Wang X; Li L; Li C; Jia Q; Teng B; Tang T; Peng J; Eglin D; Alini M; Grijpma DW; Richards G; Qin L
    Biomaterials; 2019 Mar; 197():207-219. PubMed ID: 30660996
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration.
    Zhang J; Zhou H; Yang K; Yuan Y; Liu C
    Biomaterials; 2013 Dec; 34(37):9381-92. PubMed ID: 24044997
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biodegradable ZnLiCa ternary alloys for critical-sized bone defect regeneration at load-bearing sites:
    Zhang Z; Jia B; Yang H; Han Y; Wu Q; Dai K; Zheng Y
    Bioact Mater; 2021 Nov; 6(11):3999-4013. PubMed ID: 33997489
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradable Zn-2Ag-0.04Mg Alloy for Bone Regeneration In Vivo.
    Wang J; Xia H; Fan X; Wu H; Liao Y; Yuan F
    Mol Biotechnol; 2022 Aug; 64(8):928-935. PubMed ID: 35260964
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanofibrous yarn reinforced HA-gelatin composite scaffolds promote bone formation in critical sized alveolar defects in rabbit model.
    Manju V; Anitha A; Menon D; Iyer S; Nair SV; Nair MB
    Biomed Mater; 2018 Oct; 13(6):065011. PubMed ID: 30191887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced repair of segmental bone defects in rabbit radius by porous tantalum scaffolds modified with the RGD peptide.
    Wang H; Li Q; Wang Q; Zhang H; Shi W; Gan H; Song H; Wang Z
    J Mater Sci Mater Med; 2017 Mar; 28(3):50. PubMed ID: 28197822
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong and tough magnesium wire reinforced phosphate cement composites for load-bearing bone replacement.
    Krüger R; Seitz JM; Ewald A; Bach FW; Groll J
    J Mech Behav Biomed Mater; 2013 Apr; 20():36-44. PubMed ID: 23455162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of the osteoconductivity and the degradation of novel hydroxyapatite/polyurethane combined with mesoporous silica microspheres in a rabbit osteomyelitis model.
    Wang Q; Du J; Sun Q; Xiao S; Huang W
    J Orthop Surg (Hong Kong); 2023; 31(3):10225536231206921. PubMed ID: 37820377
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chitosan-poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: in vitro degradation and in vivo bone regeneration studies.
    Jiang T; Nukavarapu SP; Deng M; Jabbarzadeh E; Kofron MD; Doty SB; Abdel-Fattah WI; Laurencin CT
    Acta Biomater; 2010 Sep; 6(9):3457-70. PubMed ID: 20307694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A simultaneous process of 3D magnesium phosphate scaffold fabrication and bioactive substance loading for hard tissue regeneration.
    Lee J; Farag MM; Park EK; Lim J; Yun HS
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():252-60. PubMed ID: 24433911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.