These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 33097921)

  • 1. Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia.
    Park GH; Noh H; Shao Z; Ni P; Qin Y; Liu D; Beaudreault CP; Park JS; Abani CP; Park JM; Le DT; Gonzalez SZ; Guan Y; Cohen BM; McPhie DL; Coyle JT; Lanz TA; Xi HS; Yin C; Huang W; Kim HY; Chung S
    Nat Neurosci; 2020 Nov; 23(11):1352-1364. PubMed ID: 33097921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function.
    Ni P; Noh H; Park GH; Shao Z; Guan Y; Park JM; Yu S; Park JS; Coyle JT; Weinberger DR; Straub RE; Cohen BM; McPhie DL; Yin C; Huang W; Kim HY; Chung S
    Mol Psychiatry; 2020 Nov; 25(11):2873-2888. PubMed ID: 31019265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Migratory cortical interneuron-specific transcriptome abnormalities in schizophrenia.
    Park JM; Liu D; Park GH; Noh H; Ni P; Yin C; Huang W; Chung S
    J Psychiatr Res; 2021 May; 137():111-116. PubMed ID: 33677214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell-derived cortical interneurons from subjects with schizophrenia.
    Shao Z; Noh H; Bin Kim W; Ni P; Nguyen C; Cote SE; Noyes E; Zhao J; Parsons T; Park JM; Zheng K; Park JJ; Coyle JT; Weinberger DR; Straub RE; Berman KF; Apud J; Ongur D; Cohen BM; McPhie DL; Rapoport JL; Perlis RH; Lanz TA; Xi HS; Yin C; Huang W; Hirayama T; Fukuda E; Yagi T; Ghosh S; Eggan KC; Kim HY; Eisenberg LM; Moghadam AA; Stanton PK; Cho JH; Chung S
    Nat Neurosci; 2019 Feb; 22(2):229-242. PubMed ID: 30664768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development.
    Liu D; Zinski A; Mishra A; Noh H; Park GH; Qin Y; Olorife O; Park JM; Abani CP; Park JS; Fung J; Sawaqed F; Coyle JT; Stahl E; Bendl J; Fullard JF; Roussos P; Zhang X; Stanton PK; Yin C; Huang W; Kim HY; Won H; Cho JH; Chung S
    Mol Psychiatry; 2022 Oct; 27(10):4218-4233. PubMed ID: 35701597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Losing your inhibition: linking cortical GABAergic interneurons to schizophrenia.
    Inan M; Petros TJ; Anderson SA
    Neurobiol Dis; 2013 May; 53():36-48. PubMed ID: 23201207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in PBMCs and Developing Cortical Interneurons in Schizophrenia.
    Ni P; Zhou C; Liang S; Jiang Y; Liu D; Shao Z; Noh H; Zhao L; Tian Y; Zhang C; Wei J; Li X; Yu H; Ni R; Yu X; Qi X; Zhang Y; Ma X; Deng W; Guo W; Wang Q; Sham PC; Chung S; Li T
    Adv Sci (Weinh); 2023 Jul; 10(20):e2300455. PubMed ID: 37211699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic deficits in iPSC-derived cortical interneurons in schizophrenia are mediated by NLGN2 and rescued by N-acetylcysteine.
    Kathuria A; Lopez-Lengowski K; Watmuff B; McPhie D; Cohen BM; Karmacharya R
    Transl Psychiatry; 2019 Nov; 9(1):321. PubMed ID: 31780643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of synaptic connectivity in schizophrenia spectrum by mutual neuron-microglia interaction.
    Breitmeyer R; Vogel S; Heider J; Hartmann SM; Wüst R; Keller AL; Binner A; Fitzgerald JC; Fallgatter AJ; Volkmer H
    Commun Biol; 2023 Apr; 6(1):472. PubMed ID: 37117634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered Gradients of Glutamate and Gamma-Aminobutyric Acid Transcripts in the Cortical Visuospatial Working Memory Network in Schizophrenia.
    Hoftman GD; Dienel SJ; Bazmi HH; Zhang Y; Chen K; Lewis DA
    Biol Psychiatry; 2018 Apr; 83(8):670-679. PubMed ID: 29357982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic contribution to microglial activation in schizophrenia.
    Koskuvi M; Pörsti E; Hewitt T; Räsänen N; Wu YC; Trontti K; McQuade A; Kalyanaraman S; Ojansuu I; Vaurio O; Cannon TD; Lönnqvist J; Therman S; Suvisaari J; Kaprio J; Blurton-Jones M; Hovatta I; Lähteenvuo M; Rolova T; Lehtonen Š; Tiihonen J; Koistinaho J
    Mol Psychiatry; 2024 Sep; 29(9):2622-2633. PubMed ID: 38519640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative metabolomics-genomics analysis identifies key networks in a stem cell-based model of schizophrenia.
    Spathopoulou A; Sauerwein GA; Marteau V; Podlesnic M; Lindlbauer T; Kipura T; Hotze M; Gabassi E; Kruszewski K; Koskuvi M; Réthelyi JM; Apáti Á; Conti L; Ku M; Koal T; Müller U; Talmazan RA; Ojansuu I; Vaurio O; Lähteenvuo M; Lehtonen Š; Mertens J; Kwiatkowski M; Günther K; Tiihonen J; Koistinaho J; Trajanoski Z; Edenhofer F
    Mol Psychiatry; 2024 Oct; 29(10):3128-3140. PubMed ID: 38684795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene.
    Kimoto S; Zaki MM; Bazmi HH; Lewis DA
    JAMA Psychiatry; 2015 Aug; 72(8):747-56. PubMed ID: 26038830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1.
    Yuan Q; Yang F; Xiao Y; Tan S; Husain N; Ren M; Hu Z; Martinowich K; Ng JS; Kim PJ; Han W; Nagata KI; Weinberger DR; Je HS
    Biol Psychiatry; 2016 Aug; 80(4):312-322. PubMed ID: 26386481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Induction and Functional Maturation of Forebrain GABAergic Neurons from Human Pluripotent Stem Cells.
    Sun AX; Yuan Q; Tan S; Xiao Y; Wang D; Khoo AT; Sani L; Tran HD; Kim P; Chiew YS; Lee KJ; Yen YC; Ng HH; Lim B; Je HS
    Cell Rep; 2016 Aug; 16(7):1942-53. PubMed ID: 27498872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.
    Aldana BI; Zhang Y; Lihme MF; Bak LK; Nielsen JE; Holst B; Hyttel P; Freude KK; Waagepetersen HS
    Neurochem Int; 2017 Jun; 106():48-61. PubMed ID: 28237843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of cortical inhibition in the pathophysiology and treatment of schizophrenia.
    Daskalakis ZJ; Fitzgerald PB; Christensen BK
    Brain Res Rev; 2007 Dec; 56(2):427-42. PubMed ID: 17980435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder.
    Woo TU; Walsh JP; Benes FM
    Arch Gen Psychiatry; 2004 Jul; 61(7):649-57. PubMed ID: 15237077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical interneuron function in autism spectrum condition.
    Lunden JW; Durens M; Phillips AW; Nestor MW
    Pediatr Res; 2019 Jan; 85(2):146-154. PubMed ID: 30367159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.