These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 33097974)

  • 1. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network.
    Blanc-Durand P; Jégou S; Kanoun S; Berriolo-Riedinger A; Bodet-Milin C; Kraeber-Bodéré F; Carlier T; Le Gouill S; Casasnovas RO; Meignan M; Itti E
    Eur J Nucl Med Mol Imaging; 2021 May; 48(5):1362-1370. PubMed ID: 33097974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images.
    Jiang C; Chen K; Teng Y; Ding C; Zhou Z; Gao Y; Wu J; He J; He K; Zhang J
    Eur Radiol; 2022 Jul; 32(7):4801-4812. PubMed ID: 35166895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TMTV-Net: fully automated total metabolic tumor volume segmentation in lymphoma PET/CT images - a multi-center generalizability analysis.
    Yousefirizi F; Klyuzhin IS; O JH; Harsini S; Tie X; Shiri I; Shin M; Lee C; Cho SY; Bradshaw TJ; Zaidi H; Bénard F; Sehn LH; Savage KJ; Steidl C; Uribe CF; Rahmim A
    Eur J Nucl Med Mol Imaging; 2024 Jun; 51(7):1937-1954. PubMed ID: 38326655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep-Learning
    Capobianco N; Meignan M; Cottereau AS; Vercellino L; Sibille L; Spottiswoode B; Zuehlsdorff S; Casasnovas O; Thieblemont C; Buvat I
    J Nucl Med; 2021 Jan; 62(1):30-36. PubMed ID: 32532925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prognostic value of metabolic tumour volume on baseline
    Shagera QA; Cheon GJ; Koh Y; Yoo MY; Kang KW; Lee DS; Kim EE; Yoon SS; Chung JK
    Eur J Nucl Med Mol Imaging; 2019 Jul; 46(7):1417-1427. PubMed ID: 30941463
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Girum KB; Rebaud L; Cottereau AS; Meignan M; Clerc J; Vercellino L; Casasnovas O; Morschhauser F; Thieblemont C; Buvat I
    J Nucl Med; 2022 Dec; 63(12):1925-1932. PubMed ID: 35710733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffuse large B-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion.
    Yuan C; Zhang M; Huang X; Xie W; Lin X; Zhao W; Li B; Qian D
    Med Phys; 2021 Jul; 48(7):3665-3678. PubMed ID: 33735451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of a convolution neural network for baseline total tumor metabolic volume on [
    Karimdjee M; Delaby G; Huglo D; Baillet C; Willaume A; Dujardin S; Bailliez A
    Eur Radiol; 2023 May; 33(5):3386-3395. PubMed ID: 36600126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor fragmentation estimated by volume surface ratio of tumors measured on 18F-FDG PET/CT is an independent prognostic factor of diffuse large B-cell lymphoma.
    Decazes P; Becker S; Toledano MN; Vera P; Desbordes P; Jardin F; Tilly H; Gardin I
    Eur J Nucl Med Mol Imaging; 2018 Sep; 45(10):1672-1679. PubMed ID: 29705879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serum level of soluble interleukin-2 receptor is positively correlated with metabolic tumor volume on
    Senjo H; Kanaya M; Izumiyama K; Minauchi K; Hirata K; Mori A; Saito M; Tanaka M; Iijima H; Tsukamoto E; Itoh K; Ota S; Morioka M; Hashimoto D; Teshima T;
    Cancer Med; 2019 Mar; 8(3):953-962. PubMed ID: 30790452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combination of baseline FDG PET/CT total metabolic tumour volume and gene expression profile have a robust predictive value in patients with diffuse large B-cell lymphoma.
    Toledano MN; Desbordes P; Banjar A; Gardin I; Vera P; Ruminy P; Jardin F; Tilly H; Becker S
    Eur J Nucl Med Mol Imaging; 2018 May; 45(5):680-688. PubMed ID: 29344718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in [Formula: see text]F]FDG PET/CT.
    Nikulin P; Zschaeck S; Maus J; Cegla P; Lombardo E; Furth C; Kaźmierska J; Rogasch JMM; Holzgreve A; Albert NL; Ferentinos K; Strouthos I; Hajiyianni M; Marschner SN; Belka C; Landry G; Cholewinski W; Kotzerke J; Hofheinz F; van den Hoff J
    Eur J Nucl Med Mol Imaging; 2023 Jul; 50(9):2751-2766. PubMed ID: 37079128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of 11 automated PET segmentation methods in lymphoma.
    Weisman AJ; Kieler MW; Perlman S; Hutchings M; Jeraj R; Kostakoglu L; Bradshaw TJ
    Phys Med Biol; 2020 Nov; 65(23):235019. PubMed ID: 32906088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostic value of the metabolic bulk volume in patients with diffuse large B-cell lymphoma on baseline
    Delaby G; Hubaut MA; Morschhauser F; Besson A; Huglo D; Herbaux C; Baillet C
    Leuk Lymphoma; 2020 Jul; 61(7):1584-1591. PubMed ID: 32100597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning Approach to Automatize TMTV Calculations Regardless of Segmentation Methodology for Major FDG-Avid Lymphomas.
    Revailler W; Cottereau AS; Rossi C; Noyelle R; Trouillard T; Morschhauser F; Casasnovas O; Thieblemont C; Gouill SL; André M; Ghesquieres H; Ricci R; Meignan M; Kanoun S
    Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baseline Total Metabolic Tumor Volume Measured with Fixed or Different Adaptive Thresholding Methods Equally Predicts Outcome in Peripheral T Cell Lymphoma.
    Cottereau AS; Hapdey S; Chartier L; Modzelewski R; Casasnovas O; Itti E; Tilly H; Vera P; Meignan MA; Becker S
    J Nucl Med; 2017 Feb; 58(2):276-281. PubMed ID: 27754905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic segmentation of prostate cancer metastases in PSMA PET/CT images using deep neural networks with weighted batch-wise dice loss.
    Xu Y; Klyuzhin I; Harsini S; Ortiz A; Zhang S; Bénard F; Dodhia R; Uribe CF; Rahmim A; Lavista Ferres J
    Comput Biol Med; 2023 May; 158():106882. PubMed ID: 37037147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
    Lee YS; Hong N; Witanto JN; Choi YR; Park J; Decazes P; Eude F; Kim CO; Chang Kim H; Goo JM; Rhee Y; Yoon SH
    Clin Nutr; 2021 Aug; 40(8):5038-5046. PubMed ID: 34365038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel analytic approach for outcome prediction in diffuse large B-cell lymphoma by [
    Zhang X; Chen L; Jiang H; He X; Feng L; Ni M; Ma M; Wang J; Zhang T; Wu S; Zhou R; Jin C; Zhang K; Qian W; Chen Z; Zhuo C; Zhang H; Tian M
    Eur J Nucl Med Mol Imaging; 2022 Mar; 49(4):1298-1310. PubMed ID: 34651227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.