These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1503 related articles for article (PubMed ID: 33097976)

  • 1. Application of machine learning approaches for osteoporosis risk prediction in postmenopausal women.
    Shim JG; Kim DW; Ryu KH; Cho EA; Ahn JH; Kim JI; Lee SH
    Arch Osteoporos; 2020 Oct; 15(1):169. PubMed ID: 33097976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years.
    Shim JG; Ryu KH; Cho EA; Ahn JH; Kim HK; Lee YJ; Lee SH
    Medicina (Kaunas); 2021 Nov; 57(11):. PubMed ID: 34833448
    [No Abstract]   [Full Text] [Related]  

  • 3. Development of Machine Learning Models for Prediction of Osteoporosis from Clinical Health Examination Data.
    Ou Yang WY; Lai CC; Tsou MT; Hwang LC
    Int J Environ Res Public Health; 2021 Jul; 18(14):. PubMed ID: 34300086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can machine learning predict pharmacotherapy outcomes? An application study in osteoporosis.
    Lin YT; Chu CY; Hung KS; Lu CH; Bednarczyk EM; Chen HY
    Comput Methods Programs Biomed; 2022 Oct; 225():107028. PubMed ID: 35930862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoporosis risk prediction using machine learning and conventional methods.
    Kim SK; Yoo TK; Oh E; Kim DW
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():188-91. PubMed ID: 24109656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of machine learning algorithms to identify people with low bone density.
    Xu R; Chen Y; Yao Z; Wu W; Cui J; Wang R; Diao Y; Jin C; Hong Z; Li X
    Front Public Health; 2024; 12():1347219. PubMed ID: 38726233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of machine learning algorithms to predict osteoporosis in postmenopausal women with type 2 diabetes mellitus.
    Wu X; Zhai F; Chang A; Wei J; Guo Y; Zhang J
    J Endocrinol Invest; 2023 Dec; 46(12):2535-2546. PubMed ID: 37171784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoporosis risk prediction for bone mineral density assessment of postmenopausal women using machine learning.
    Yoo TK; Kim SK; Kim DW; Choi JY; Lee WH; Oh E; Park EC
    Yonsei Med J; 2013 Nov; 54(6):1321-30. PubMed ID: 24142634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of delayed graft function after kidney transplantation: comparison between logistic regression and machine learning methods.
    Decruyenaere A; Decruyenaere P; Peeters P; Vermassen F; Dhaene T; Couckuyt I
    BMC Med Inform Decis Mak; 2015 Oct; 15():83. PubMed ID: 26466993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and internal validation of a machine-learning-developed model for predicting 1-year mortality after fragility hip fracture.
    Kitcharanant N; Chotiyarnwong P; Tanphiriyakun T; Vanitcharoenkul E; Mahaisavariya C; Boonyaprapa W; Unnanuntana A
    BMC Geriatr; 2022 May; 22(1):451. PubMed ID: 35610589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Risk Prediction Model for Physical Restraints Among Older Chinese Adults in Long-term Care Facilities: Machine Learning Study.
    Wang J; Chen H; Wang H; Liu W; Peng D; Zhao Q; Xiao M
    J Med Internet Res; 2023 Apr; 25():e43815. PubMed ID: 37023416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of Unplanned Extubation Prediction Models Using Intensive Care Unit Data: Retrospective, Comparative, Machine Learning Study.
    Hur S; Min JY; Yoo J; Kim K; Chung CR; Dykes PC; Cha WC
    J Med Internet Res; 2021 Aug; 23(8):e23508. PubMed ID: 34382940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of fatty liver disease using machine learning algorithms.
    Wu CC; Yeh WC; Hsu WD; Islam MM; Nguyen PAA; Poly TN; Wang YC; Yang HC; Jack Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():23-29. PubMed ID: 30712601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning for the prediction of acute kidney injury in patients with sepsis.
    Yue S; Li S; Huang X; Liu J; Hou X; Zhao Y; Niu D; Wang Y; Tan W; Wu J
    J Transl Med; 2022 May; 20(1):215. PubMed ID: 35562803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, comparison, and internal validation of prediction models to determine the visual prognosis of patients with open globe injuries using machine learning approaches.
    Shariati MM; Eslami S; Shoeibi N; Eslampoor A; Sedaghat M; Gharaei H; Zarei-Ghanavati S; Derakhshan A; Abrishami M; Abrishami M; Hosseini SM; Rad SS; Astaneh MA; Farimani RM
    BMC Med Inform Decis Mak; 2024 May; 24(1):131. PubMed ID: 38773484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of machine learning model to predict osteoporosis based on abdominal computed tomography images of the psoas muscle: a retrospective study.
    Huang CB; Hu JS; Tan K; Zhang W; Xu TH; Yang L
    BMC Geriatr; 2022 Oct; 22(1):796. PubMed ID: 36229793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Joint modeling strategy for using electronic medical records data to build machine learning models: an example of intracerebral hemorrhage.
    Tang J; Wang X; Wan H; Lin C; Shao Z; Chang Y; Wang H; Wu Y; Zhang T; Du Y
    BMC Med Inform Decis Mak; 2022 Oct; 22(1):278. PubMed ID: 36284327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer.
    Wu A; Luo L; Zeng Q; Wu C; Shu X; Huang P; Wang Z; Hu T; Feng Z; Tu Y; Zhu Y; Cao Y; Li Z
    Sci Rep; 2024 Jul; 14(1):16208. PubMed ID: 39003337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification Models for COVID-19 Test Prioritization in Brazil: Machine Learning Approach.
    Viana Dos Santos Santana Í; Cm da Silveira A; Sobrinho Á; Chaves E Silva L; Dias da Silva L; Santos DFS; Gurjão EC; Perkusich A
    J Med Internet Res; 2021 Apr; 23(4):e27293. PubMed ID: 33750734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 76.