BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 33098223)

  • 1. Positioning Bacillus subtilis as terpenoid cell factory.
    Pramastya H; Song Y; Elfahmi EY; Sukrasno S; Quax WJ
    J Appl Microbiol; 2021 Jun; 130(6):1839-1856. PubMed ID: 33098223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering of Bacillus subtilis for terpenoid production.
    Guan Z; Xue D; Abdallah II; Dijkshoorn L; Setroikromo R; Lv G; Quax WJ
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9395-406. PubMed ID: 26373726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isoprene biosynthesis in Bacillus subtilis via the methylerythritol phosphate pathway.
    Wagner WP; Helmig D; Fall R
    J Nat Prod; 2000 Jan; 63(1):37-40. PubMed ID: 10650075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of isoprenoid precursor toxicity in Bacillus subtilis.
    Sivy TL; Fall R; Rosenstiel TN
    Biosci Biotechnol Biochem; 2011; 75(12):2376-83. PubMed ID: 22146731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis.
    Volke DC; Rohwer J; Fischer R; Jennewein S
    Microb Cell Fact; 2019 Nov; 18(1):192. PubMed ID: 31690314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway.
    Zhao Y; Yang J; Qin B; Li Y; Sun Y; Su S; Xian M
    Appl Microbiol Biotechnol; 2011 Jun; 90(6):1915-22. PubMed ID: 21468716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis.
    Julsing MK; Rijpkema M; Woerdenbag HJ; Quax WJ; Kayser O
    Appl Microbiol Biotechnol; 2007 Jul; 75(6):1377-84. PubMed ID: 17458547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of IspF from
    Liu Z; Jin Y; Liu W; Tao Y; Wang G
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29335298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli.
    Yang C; Gao X; Jiang Y; Sun B; Gao F; Yang S
    Metab Eng; 2016 Sep; 37():79-91. PubMed ID: 27174717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A regulated synthetic operon facilitates stable overexpression of multigene terpenoid pathway in Bacillus subtilis.
    Abdallah II; Xue D; Pramastya H; van Merkerk R; Setroikromo R; Quax WJ
    J Ind Microbiol Biotechnol; 2020 Feb; 47(2):243-249. PubMed ID: 31894423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial engineering for improved menaquinone-4 biosynthesis in Bacillus subtilis.
    Yuan P; Cui S; Liu Y; Li J; Lv X; Liu L; Du G
    Enzyme Microb Technol; 2020 Nov; 141():109652. PubMed ID: 33051011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of the Key Enzymes in the Methylerythritol 4-phosphate Pathway in
    Lim H; Park J; Woo HM
    J Agric Food Chem; 2020 Sep; 68(39):10780-10786. PubMed ID: 32854502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of isopentenol biosynthetic genes from Bacillus subtilis by a screening method based on isoprenoid precursor toxicity.
    Withers ST; Gottlieb SS; Lieu B; Newman JD; Keasling JD
    Appl Environ Microbiol; 2007 Oct; 73(19):6277-83. PubMed ID: 17693564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of endogenous 1-deoxy-d-xylulose 5-phosphate synthase (DXS) in cyanobacterium Synechocystis sp. PCC6803 accelerates protein aggregation.
    Kudoh K; Hotta S; Sekine M; Fujii R; Uchida A; Kubota G; Kawano Y; Ihara M
    J Biosci Bioeng; 2017 May; 123(5):590-596. PubMed ID: 28139350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High level production of amorphadiene using Bacillus subtilis as an optimized terpenoid cell factory.
    Pramastya H; Xue D; Abdallah II; Setroikromo R; Quax WJ
    N Biotechnol; 2021 Jan; 60():159-167. PubMed ID: 33148534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control].
    Wang J; Xiong Z; Zhang S; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):64-75. PubMed ID: 24818480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomics Integrated with Free and Bound Terpenoid Aroma Profiling during "Shine Muscat" (
    Wang W; Feng J; Wei L; Khalil-Ur-Rehman M; Nieuwenhuizen NJ; Yang L; Zheng H; Tao J
    J Agric Food Chem; 2021 Feb; 69(4):1413-1429. PubMed ID: 33481572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the isoprene biosynthetic pathway in kudzu.
    Sharkey TD; Yeh S; Wiberley AE; Falbel TG; Gong D; Fernandez DE
    Plant Physiol; 2005 Feb; 137(2):700-12. PubMed ID: 15653811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action.
    Bergman ME; Davis B; Phillips MA
    Molecules; 2019 Nov; 24(21):. PubMed ID: 31683764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced C30 carotenoid production in Bacillus subtilis by systematic overexpression of MEP pathway genes.
    Xue D; Abdallah II; de Haan IE; Sibbald MJ; Quax WJ
    Appl Microbiol Biotechnol; 2015 Jul; 99(14):5907-15. PubMed ID: 25851715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.