BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 33098223)

  • 21. Systematic overexpression study to find target enzymes enhancing production of terpenes in Synechocystis PCC 6803, using isoprene as a model compound.
    Englund E; Shabestary K; Hudson EP; Lindberg P
    Metab Eng; 2018 Sep; 49():164-177. PubMed ID: 30025762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methylerythritol 4-phosphate (MEP) pathway metabolic regulation.
    Banerjee A; Sharkey TD
    Nat Prod Rep; 2014 Aug; 31(8):1043-55. PubMed ID: 24921065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering plant family TPS into cyanobacterial host for terpenoids production.
    Rautela A; Kumar S
    Plant Cell Rep; 2022 Sep; 41(9):1791-1803. PubMed ID: 35789422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vivo Platforms for Terpenoid Overproduction and the Generation of Chemical Diversity.
    Bian G; Ma T; Liu T
    Methods Enzymol; 2018; 608():97-129. PubMed ID: 30173775
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthetic pathway for the C45 polyprenol, solanesol, in tobacco.
    Fukusaki E; Takeno S; Bamba T; Okumoto H; Katto H; Kajiyama S; Kobayashi A
    Biosci Biotechnol Biochem; 2004 Sep; 68(9):1988-90. PubMed ID: 15388978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coregulation of Terpenoid Pathway Genes and Prediction of Isoprene Production in Bacillus subtilis Using Transcriptomics.
    Hess BM; Xue J; Markillie LM; Taylor RC; Wiley HS; Ahring BK; Linggi B
    PLoS One; 2013; 8(6):e66104. PubMed ID: 23840410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosynthetic studies on terpenoids produced by Streptomyces.
    Kuzuyama T
    J Antibiot (Tokyo); 2017 Jul; 70(7):811-818. PubMed ID: 28196976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.
    Wang X; Liu W; Xin C; Zheng Y; Cheng Y; Sun S; Li R; Zhu XG; Dai SY; Rentzepis PM; Yuan JS
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14225-14230. PubMed ID: 27911807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Probable novel MEP pathway inhibitor and its binding protein, IspG.
    Nakagawa K; Takada K; Imamura N
    Biosci Biotechnol Biochem; 2013; 77(7):1449-54. PubMed ID: 23832336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial Cell Factories for the Production of Terpenoid Flavor and Fragrance Compounds.
    Schempp FM; Drummond L; Buchhaupt M; Schrader J
    J Agric Food Chem; 2018 Mar; 66(10):2247-2258. PubMed ID: 28418659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering.
    Morrone D; Lowry L; Determan MK; Hershey DM; Xu M; Peters RJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1893-906. PubMed ID: 19777230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering cyanobacteria for production of terpenoids.
    Lin PC; Pakrasi HB
    Planta; 2019 Jan; 249(1):145-154. PubMed ID: 30465115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne').
    Jiang F; Liu D; Dai J; Yang T; Zhang J; Che D; Fan J
    Mol Biotechnol; 2024 Jan; 66(1):56-67. PubMed ID: 37014586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combination of Entner-Doudoroff pathway with MEP increases isoprene production in engineered Escherichia coli.
    Liu H; Sun Y; Ramos KR; Nisola GM; Valdehuesa KN; Lee WK; Park SJ; Chung WJ
    PLoS One; 2013; 8(12):e83290. PubMed ID: 24376679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploration of the 1-deoxy-d-xylulose 5-phosphate synthases suitable for the creation of a robust isoprenoid biosynthesis system.
    Kudoh K; Kubota G; Fujii R; Kawano Y; Ihara M
    J Biosci Bioeng; 2017 Mar; 123(3):300-307. PubMed ID: 27856234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering of Multiple Modules to Improve Amorphadiene Production in
    Song Y; He S; Abdallah II; Jopkiewicz A; Setroikromo R; van Merkerk R; Tepper PG; Quax WJ
    J Agric Food Chem; 2021 Apr; 69(16):4785-4794. PubMed ID: 33877851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies of isoprenoids production in engineered bacteria.
    Li Y; Wang G
    J Appl Microbiol; 2016 Oct; 121(4):932-40. PubMed ID: 27428054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli.
    Liu H; Wang Y; Tang Q; Kong W; Chung WJ; Lu T
    Microb Cell Fact; 2014 Sep; 13():135. PubMed ID: 25212876
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combinatorial Methylerythritol Phosphate Pathway Engineering and Process Optimization for Increased Menaquinone-7 Synthesis in
    Chen T; Xia H; Cui S; Lv X; Li X; Liu Y; Li J; Du G; Liu L
    J Microbiol Biotechnol; 2020 May; 30(5):762-769. PubMed ID: 32482943
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis.
    Xue J; Ahring BK
    Appl Environ Microbiol; 2011 Apr; 77(7):2399-405. PubMed ID: 21296950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.