BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 33098437)

  • 1. Modulation of the mitochondrial voltage-dependent anion channel (VDAC) by hydrogen peroxide and its recovery by curcumin.
    Malik C; Ghosh S
    Eur Biophys J; 2020 Oct; 49(7):661-672. PubMed ID: 33098437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage dependent anion channel and its interaction with N-acetyl-L-Cysteine (NAC) under oxidative stress on planar lipid bilayer.
    Siddiqui SI; Malik C; Ghosh S
    Biochimie; 2023 Jun; 209():150-160. PubMed ID: 36780980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinidine partially blocks mitochondrial voltage-dependent anion channel (VDAC).
    Malik C; Ghosh S
    Eur Biophys J; 2020 Mar; 49(2):193-205. PubMed ID: 32152682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin.
    Tewari D; Ahmed T; Chirasani VR; Singh PK; Maji SK; Senapati S; Bera AK
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):151-8. PubMed ID: 25459681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homocysteine-Thiolactone Modulates Gating of Mitochondrial Voltage-Dependent Anion Channel (VDAC) and Protects It from Induced Oxidative Stress.
    Koren TDT; Ghosh S
    J Membr Biol; 2022 Feb; 255(1):79-97. PubMed ID: 35103807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. VDAC1 cysteine residues: topology and function in channel activity and apoptosis.
    Aram L; Geula S; Arbel N; Shoshan-Barmatz V
    Biochem J; 2010 Apr; 427(3):445-54. PubMed ID: 20192921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of Single-Channel Conductance of Voltage-Dependent Anion Channel by Mercuric Chloride in a Planar Lipid Bilayer.
    Malik C; Ghosh S
    J Membr Biol; 2020 Aug; 253(4):357-371. PubMed ID: 32748041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal voltage-dependent anion channel: characterization and cellular localization.
    Gincel D; Vardi N; Shoshan-Barmatz V
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2097-104. PubMed ID: 12091402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae.
    Guardiani C; Magrì A; Karachitos A; Di Rosa MC; Reina S; Bodrenko I; Messina A; Kmita H; Ceccarelli M; De Pinto V
    Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):270-279. PubMed ID: 29408701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular Signal-Regulated Kinase1 (ERK1)-Mediated Phosphorylation of Voltage-Dependent Anion Channel (VDAC) Suppresses its Conductance.
    Malik C; Siddiqui SI; Ghosh S
    J Membr Biol; 2022 Feb; 255(1):107-116. PubMed ID: 34731249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport.
    Rosencrans WM; Aguilella VM; Rostovtseva TK; Bezrukov SM
    Cell Calcium; 2021 May; 95():102355. PubMed ID: 33578201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel.
    Gupta R; Ghosh S
    Biochem Biophys Res Commun; 2015 Mar; 459(1):100-6. PubMed ID: 25721670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability.
    Xu X; Decker W; Sampson MJ; Craigen WJ; Colombini M
    J Membr Biol; 1999 Jul; 170(2):89-102. PubMed ID: 10430654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria.
    Poleti MD; Tesch AC; Crepaldi CR; Souza GH; Eberlin MN; de Cerqueira César M
    J Mol Neurosci; 2010 May; 41(1):48-54. PubMed ID: 19688190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration dependent ion selectivity in VDAC: a molecular dynamics simulation study.
    Krammer EM; Homblé F; Prévost M
    PLoS One; 2011; 6(12):e27994. PubMed ID: 22164223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2.
    Gattin Z; Schneider R; Laukat Y; Giller K; Maier E; Zweckstetter M; Griesinger C; Benz R; Becker S; Lange A
    J Biomol NMR; 2015 Apr; 61(3-4):311-20. PubMed ID: 25399320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the voltage-dependent anion channel (VDAC) by glutamate.
    Gincel D; Silberberg SD; Shoshan-Barmatz V
    J Bioenerg Biomembr; 2000 Dec; 32(6):571-83. PubMed ID: 15254371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities.
    Guardiani C; Scorciapino MA; Amodeo GF; Grdadolnik J; Pappalardo G; De Pinto V; Ceccarelli M; Casu M
    Biochemistry; 2015 Sep; 54(36):5646-56. PubMed ID: 26303511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory.
    González-Durruthy M; Werhli AV; Seus V; Machado KS; Pazos A; Munteanu CR; González-Díaz H; Monserrat JM
    Sci Rep; 2017 Oct; 7(1):13271. PubMed ID: 29038520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins.
    Sabirov RZ; Sheiko T; Liu H; Deng D; Okada Y; Craigen WJ
    J Biol Chem; 2006 Jan; 281(4):1897-904. PubMed ID: 16291750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.