These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 33098437)
1. Modulation of the mitochondrial voltage-dependent anion channel (VDAC) by hydrogen peroxide and its recovery by curcumin. Malik C; Ghosh S Eur Biophys J; 2020 Oct; 49(7):661-672. PubMed ID: 33098437 [TBL] [Abstract][Full Text] [Related]
2. Voltage dependent anion channel and its interaction with N-acetyl-L-Cysteine (NAC) under oxidative stress on planar lipid bilayer. Siddiqui SI; Malik C; Ghosh S Biochimie; 2023 Jun; 209():150-160. PubMed ID: 36780980 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin. Tewari D; Ahmed T; Chirasani VR; Singh PK; Maji SK; Senapati S; Bera AK Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):151-8. PubMed ID: 25459681 [TBL] [Abstract][Full Text] [Related]
5. Homocysteine-Thiolactone Modulates Gating of Mitochondrial Voltage-Dependent Anion Channel (VDAC) and Protects It from Induced Oxidative Stress. Koren TDT; Ghosh S J Membr Biol; 2022 Feb; 255(1):79-97. PubMed ID: 35103807 [TBL] [Abstract][Full Text] [Related]
6. VDAC1 cysteine residues: topology and function in channel activity and apoptosis. Aram L; Geula S; Arbel N; Shoshan-Barmatz V Biochem J; 2010 Apr; 427(3):445-54. PubMed ID: 20192921 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Single-Channel Conductance of Voltage-Dependent Anion Channel by Mercuric Chloride in a Planar Lipid Bilayer. Malik C; Ghosh S J Membr Biol; 2020 Aug; 253(4):357-371. PubMed ID: 32748041 [TBL] [Abstract][Full Text] [Related]
8. Retinal voltage-dependent anion channel: characterization and cellular localization. Gincel D; Vardi N; Shoshan-Barmatz V Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2097-104. PubMed ID: 12091402 [TBL] [Abstract][Full Text] [Related]
9. yVDAC2, the second mitochondrial porin isoform of Saccharomyces cerevisiae. Guardiani C; Magrì A; Karachitos A; Di Rosa MC; Reina S; Bodrenko I; Messina A; Kmita H; Ceccarelli M; De Pinto V Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):270-279. PubMed ID: 29408701 [TBL] [Abstract][Full Text] [Related]
10. Extracellular Signal-Regulated Kinase1 (ERK1)-Mediated Phosphorylation of Voltage-Dependent Anion Channel (VDAC) Suppresses its Conductance. Malik C; Siddiqui SI; Ghosh S J Membr Biol; 2022 Feb; 255(1):107-116. PubMed ID: 34731249 [TBL] [Abstract][Full Text] [Related]
11. α-Synuclein emerges as a potent regulator of VDAC-facilitated calcium transport. Rosencrans WM; Aguilella VM; Rostovtseva TK; Bezrukov SM Cell Calcium; 2021 May; 95():102355. PubMed ID: 33578201 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of voltage-dependent anion channel by c-Jun N-terminal Kinase-3 leads to closure of the channel. Gupta R; Ghosh S Biochem Biophys Res Commun; 2015 Mar; 459(1):100-6. PubMed ID: 25721670 [TBL] [Abstract][Full Text] [Related]
13. Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. Xu X; Decker W; Sampson MJ; Craigen WJ; Colombini M J Membr Biol; 1999 Jul; 170(2):89-102. PubMed ID: 10430654 [TBL] [Abstract][Full Text] [Related]
14. Relationship between expression of voltage-dependent anion channel (VDAC) isoforms and type of hexokinase binding sites on brain mitochondria. Poleti MD; Tesch AC; Crepaldi CR; Souza GH; Eberlin MN; de Cerqueira César M J Mol Neurosci; 2010 May; 41(1):48-54. PubMed ID: 19688190 [TBL] [Abstract][Full Text] [Related]
15. Concentration dependent ion selectivity in VDAC: a molecular dynamics simulation study. Krammer EM; Homblé F; Prévost M PLoS One; 2011; 6(12):e27994. PubMed ID: 22164223 [TBL] [Abstract][Full Text] [Related]
16. Solid-state NMR, electrophysiology and molecular dynamics characterization of human VDAC2. Gattin Z; Schneider R; Laukat Y; Giller K; Maier E; Zweckstetter M; Griesinger C; Benz R; Becker S; Lange A J Biomol NMR; 2015 Apr; 61(3-4):311-20. PubMed ID: 25399320 [TBL] [Abstract][Full Text] [Related]
17. Modulation of the voltage-dependent anion channel (VDAC) by glutamate. Gincel D; Silberberg SD; Shoshan-Barmatz V J Bioenerg Biomembr; 2000 Dec; 32(6):571-83. PubMed ID: 15254371 [TBL] [Abstract][Full Text] [Related]
18. The N-Terminal Peptides of the Three Human Isoforms of the Mitochondrial Voltage-Dependent Anion Channel Have Different Helical Propensities. Guardiani C; Scorciapino MA; Amodeo GF; Grdadolnik J; Pappalardo G; De Pinto V; Ceccarelli M; Casu M Biochemistry; 2015 Sep; 54(36):5646-56. PubMed ID: 26303511 [TBL] [Abstract][Full Text] [Related]
19. Decrypting Strong and Weak Single-Walled Carbon Nanotubes Interactions with Mitochondrial Voltage-Dependent Anion Channels Using Molecular Docking and Perturbation Theory. González-Durruthy M; Werhli AV; Seus V; Machado KS; Pazos A; Munteanu CR; González-Díaz H; Monserrat JM Sci Rep; 2017 Oct; 7(1):13271. PubMed ID: 29038520 [TBL] [Abstract][Full Text] [Related]
20. Genetic demonstration that the plasma membrane maxianion channel and voltage-dependent anion channels are unrelated proteins. Sabirov RZ; Sheiko T; Liu H; Deng D; Okada Y; Craigen WJ J Biol Chem; 2006 Jan; 281(4):1897-904. PubMed ID: 16291750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]