These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 33098611)
21. [The Role of GRK2 and Its Potential as a New Therapeutic Target in Diabetic Vascular Complications]. Taguchi K Yakugaku Zasshi; 2015; 135(8):961-7. PubMed ID: 26234354 [TBL] [Abstract][Full Text] [Related]
22. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Lee YS; Shin S; Shigihara T; Hahm E; Liu MJ; Han J; Yoon JW; Jun HS Diabetes; 2007 Jun; 56(6):1671-9. PubMed ID: 17369525 [TBL] [Abstract][Full Text] [Related]
23. [Aortic endothelium-dependent vasodilation function and PI3K-, PKB-, eNOS mRNA expressions in insulin-resistant and type 2 diabetic rats]. Wu J; Lei MX; Liu L; Xie XY Zhonghua Xin Xue Guan Bing Za Zhi; 2007 Mar; 35(3):265-70. PubMed ID: 17582297 [TBL] [Abstract][Full Text] [Related]
24. Possible involvement of Akt activity in endothelial dysfunction in type 2 diabetic mice. Takenouchi Y; Kobayashi T; Matsumoto T; Kamata K J Pharmacol Sci; 2008 Apr; 106(4):600-8. PubMed ID: 18391484 [TBL] [Abstract][Full Text] [Related]
25. Effects of the novel (Pro3)GIP antagonist and exendin(9-39)amide on GIP- and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic (ob/ob) mice: evidence that GIP is the major physiological incretin. Gault VA; O'Harte FP; Harriott P; Mooney MH; Green BD; Flatt PR Diabetologia; 2003 Feb; 46(2):222-30. PubMed ID: 12627321 [TBL] [Abstract][Full Text] [Related]
26. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Han F; Zhang S; Hou N; Wang D; Sun X Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1501-8. PubMed ID: 26371167 [TBL] [Abstract][Full Text] [Related]
27. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Taguchi K; Tano I; Kaneko N; Matsumoto T; Kobayashi T Biomed Pharmacother; 2020 Sep; 129():110463. PubMed ID: 32768953 [TBL] [Abstract][Full Text] [Related]
28. Alpha-mangostin improves endothelial dysfunction in db/db mice through inhibition of aSMase/ceramide pathway. Jiang M; Huang S; Duan W; Liu Q; Lei M J Cell Mol Med; 2021 Apr; 25(7):3601-3609. PubMed ID: 33719188 [TBL] [Abstract][Full Text] [Related]
29. Co-treatment with clonidine and a GRK2 inhibitor prevented rebound hypertension and endothelial dysfunction after withdrawal in diabetes. Taguchi K; Bessho N; Hasegawa M; Narimatsu H; Matsumoto T; Kobayashi T Hypertens Res; 2018 Apr; 41(4):263-274. PubMed ID: 29463871 [TBL] [Abstract][Full Text] [Related]
30. Short-term insulin treatment and aortic expressions of IGF-1 receptor and VEGF mRNA in diabetic rats. Kobayashi T; Kamata K Am J Physiol Heart Circ Physiol; 2002 Nov; 283(5):H1761-8. PubMed ID: 12384452 [TBL] [Abstract][Full Text] [Related]
31. Gender differences in endothelial function in aortas from type 2 diabetic model mice. Takenouchi Y; Kobayashi T; Taguchi K; Matsumoto T; Kamata K J Pharmacol Sci; 2009 Sep; 111(1):91-9. PubMed ID: 19721331 [TBL] [Abstract][Full Text] [Related]
32. Ameliorative effect of berberine on endothelial dysfunction in diabetic rats induced by high-fat diet and streptozotocin. Wang C; Li J; Lv X; Zhang M; Song Y; Chen L; Liu Y Eur J Pharmacol; 2009 Oct; 620(1-3):131-7. PubMed ID: 19686728 [TBL] [Abstract][Full Text] [Related]
33. Impairment of PI3-K/Akt pathway underlies attenuated endothelial function in aorta of type 2 diabetic mouse model. Kobayashi T; Taguchi K; Yasuhiro T; Matsumoto T; Kamata K Hypertension; 2004 Dec; 44(6):956-62. PubMed ID: 15505117 [TBL] [Abstract][Full Text] [Related]
34. Glucagon-like peptide-2 receptor modulates islet adaptation to metabolic stress in the ob/ob mouse. Bahrami J; Longuet C; Baggio LL; Li K; Drucker DJ Gastroenterology; 2010 Sep; 139(3):857-68. PubMed ID: 20546737 [TBL] [Abstract][Full Text] [Related]
35. Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Yan TT; Li Q; Zhang XH; Wu WK; Sun J; Li L; Zhang Q; Tan HM Clin Exp Pharmacol Physiol; 2010 Nov; 37(11):1071-7. PubMed ID: 20698860 [TBL] [Abstract][Full Text] [Related]
36. Vascular effects of linagliptin in non-obese diabetic mice are glucose-independent and involve positive modulation of the endothelial nitric oxide synthase (eNOS)/caveolin-1 (CAV-1) pathway. Vellecco V; Mitidieri E; Gargiulo A; Brancaleone V; Matassa D; Klein T; Esposito F; Cirino G; Bucci M Diabetes Obes Metab; 2016 Dec; 18(12):1236-1243. PubMed ID: 27460695 [TBL] [Abstract][Full Text] [Related]
37. Induction of Haemeoxygenase-1 Directly Improves Endothelial Function in Isolated Aortas from Obese Rats through the Ampk-Pi3k/Akt-Enos Pathway. Han F; Guo Y; Xu L; Hou N; Han F; Sun X Cell Physiol Biochem; 2015; 36(4):1480-90. PubMed ID: 26160485 [TBL] [Abstract][Full Text] [Related]
38. Glucagon-like peptide-1 attenuates endothelial barrier injury in diabetes via cAMP/PKA mediated down-regulation of MLC phosphorylation. Tang ST; Tang HQ; Su H; Wang Y; Zhou Q; Zhang Q; Wang Y; Zhu HQ Biomed Pharmacother; 2019 May; 113():108667. PubMed ID: 30852419 [TBL] [Abstract][Full Text] [Related]
39. Alogliptin improves endothelial function by promoting autophagy in perivascular adipose tissue of obese mice through a GLP-1-dependent mechanism. Zhu B; Li Y; Mei W; He M; Ding Y; Meng B; Zhao H; Xiang G Vascul Pharmacol; 2019 Apr; 115():55-63. PubMed ID: 30447331 [TBL] [Abstract][Full Text] [Related]
40. Dysregulation of TRPV4, eNOS and caveolin-1 contribute to endothelial dysfunction in the streptozotocin rat model of diabetes. Shamsaldeen YA; Lione LA; Benham CD Eur J Pharmacol; 2020 Dec; 888():173441. PubMed ID: 32810492 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]