BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33099574)

  • 1. Targeting tumor cell-derived CCL2 as a strategy to overcome Bevacizumab resistance in ETV5
    Feng H; Liu K; Shen X; Liang J; Wang C; Qiu W; Cheng X; Zhao R
    Cell Death Dis; 2020 Oct; 11(10):916. PubMed ID: 33099574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ETS variant 5 promotes colorectal cancer angiogenesis by targeting platelet-derived growth factor BB.
    Cheng X; Jin Z; Ji X; Shen X; Feng H; Morgenlander W; Ou B; Wu H; Gao H; Ye F; Zhang Y; Peng Y; Liang J; Jiang Y; Zhang T; Qiu W; Lu X; Zhao R
    Int J Cancer; 2019 Jul; 145(1):179-191. PubMed ID: 30650178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FOXF1 promotes angiogenesis and accelerates bevacizumab resistance in colorectal cancer by transcriptionally activating VEGFA.
    Wang S; Xiao Z; Hong Z; Jiao H; Zhu S; Zhao Y; Bi J; Qiu J; Zhang D; Yan J; Zhang L; Huang C; Li T; Liang L; Liao W; Ye Y; Ding Y
    Cancer Lett; 2018 Dec; 439():78-90. PubMed ID: 30253191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of E26 transformation-specific variant transcription factor 5 in colorectal cancer cell proliferation and cell cycle progression.
    Peng Y; Feng H; Wang C; Song Z; Zhang Y; Liu K; Cheng X; Zhao R
    Cell Death Dis; 2021 Apr; 12(5):427. PubMed ID: 33931578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aryl hydrocarbon receptor nuclear translocator-like (ARNTL/BMAL1) is associated with bevacizumab resistance in colorectal cancer via regulation of vascular endothelial growth factor A.
    Burgermeister E; Battaglin F; Eladly F; Wu W; Herweck F; Schulte N; Betge J; Härtel N; Kather JN; Weis CA; Gaiser T; Marx A; Weiss C; Hofheinz R; Miller IS; Loupakis F; Lenz HJ; Byrne AT; Ebert MP
    EBioMedicine; 2019 Jul; 45():139-154. PubMed ID: 31300350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-free DNA analysis reveals POLR1D-mediated resistance to bevacizumab in colorectal cancer.
    Zhou Q; Perakis SO; Ulz P; Mohan S; Riedl JM; Talakic E; Lax S; Tötsch M; Hoefler G; Bauernhofer T; Pichler M; Gerger A; Geigl JB; Heitzer E; Speicher MR
    Genome Med; 2020 Feb; 12(1):20. PubMed ID: 32087735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression.
    Wang R; Ma Y; Zhan S; Zhang G; Cao L; Zhang X; Shi T; Chen W
    Cell Death Dis; 2020 Jan; 11(1):55. PubMed ID: 31974361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MicroRNA-181a promotes angiogenesis in colorectal cancer by targeting SRCIN1 to promote the SRC/VEGF signaling pathway.
    Sun W; Wang X; Li J; You C; Lu P; Feng H; Kong Y; Zhang H; Liu Y; Jiao R; Chen X; Ba Y
    Cell Death Dis; 2018 Apr; 9(4):438. PubMed ID: 29739921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI.
    Cho HR; Kumari N; Thi Vu H; Kim H; Park CK; Choi SH
    Sci Rep; 2019 Jul; 9(1):11085. PubMed ID: 31366997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in expression levels of ERCC1, DPYD, and VEGFA mRNA after first-line chemotherapy of metastatic colorectal cancer: results of a multicenter study.
    Baba H; Baba Y; Uemoto S; Yoshida K; Saiura A; Watanabe M; Maehara Y; Oki E; Ikeda Y; Matsuda H; Yamamoto M; Shimada M; Taketomi A; Unno M; Sugihara K; Ogata Y; Eguchi S; Kitano S; Shirouzu K; Saiki Y; Takamori H; Mori M; Hirata T; Wakabayashi G; Kokudo N
    Oncotarget; 2015 Oct; 6(32):34004-13. PubMed ID: 26372896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficacy of a Bispecific Antibody Co-Targeting VEGFA and Ang-2 in Combination with Chemotherapy in a Chemoresistant Colorectal Carcinoma Xenograft Model.
    Mueller T; Freystein J; Lucas H; Schmoll HJ
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gankyrin Contributes to Tumorigenesis and Chemoresistance in Sporadic Colorectal Cancer.
    Sakurai T; Komeda Y; Nagai T; Kamata K; Minaga K; Yamao K; Takenaka M; Hagiwara S; Watanabe T; Nishida N; Kashida H; Nakagawa K; Kudo M
    Digestion; 2019; 100(3):192-200. PubMed ID: 30513515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-tumor effects of ONC201 in combination with VEGF-inhibitors significantly impacts colorectal cancer growth and survival in vivo through complementary non-overlapping mechanisms.
    Wagner J; Kline CL; Zhou L; Khazak V; El-Deiry WS
    J Exp Clin Cancer Res; 2018 Jan; 37(1):11. PubMed ID: 29357916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Administration of Anti-VEGFA Antibody Upregulates PAI-1 Secretion from Ovarian Cancer Cells via miR-143-3p Downregulation.
    Yagi T; Sawada K; Miyamoto M; Shimizu A; Oi Y; Toda A; Nakamura K; Kinose Y; Kodama M; Hashimoto K; Kimura T
    Mol Cancer Res; 2023 Oct; 21(10):1093-1106. PubMed ID: 37327051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. P53-induced miR-1249 inhibits tumor growth, metastasis, and angiogenesis by targeting VEGFA and HMGA2.
    Chen X; Zeng K; Xu M; Liu X; Hu X; Xu T; He B; Pan Y; Sun H; Wang S
    Cell Death Dis; 2019 Feb; 10(2):131. PubMed ID: 30755600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiogenic and Antiangiogenic VEGFA Splice Variants in Colorectal Cancer: Prospective Retrospective Cohort Study in Patients Treated With Irinotecan-Based Chemotherapy and Bevacizumab.
    Pentheroudakis G; Mavroeidis L; Papadopoulou K; Koliou GA; Bamia C; Chatzopoulos K; Samantas E; Mauri D; Efstratiou I; Pectasides D; Makatsoris T; Bafaloukos D; Papakostas P; Papatsibas G; Bombolaki I; Chrisafi S; Kourea HP; Petraki K; Kafiri G; Fountzilas G; Kotoula V
    Clin Colorectal Cancer; 2019 Dec; 18(4):e370-e384. PubMed ID: 31402291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NT5DC2 knockdown inhibits colorectal carcinoma progression by repressing metastasis, angiogenesis and tumor-associated macrophage recruitment: A mechanism involving VEGF signaling.
    Zhu Z; Hou Q; Guo H
    Exp Cell Res; 2020 Dec; 397(1):112311. PubMed ID: 32991874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-622 inhibits angiogenesis by suppressing the CXCR4-VEGFA axis in colorectal cancer.
    Fang Y; Sun B; Wang J; Wang Y
    Gene; 2019 May; 699():37-42. PubMed ID: 30851425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hypoxia upregulates HIG2 expression and contributes to bevacizumab resistance in glioblastoma.
    Mao XG; Wang C; Liu DY; Zhang X; Wang L; Yan M; Zhang W; Zhu J; Li ZC; Mi C; Tian JY; Hou GD; Miao SY; Song ZX; Li JC; Xue XY
    Oncotarget; 2016 Jul; 7(30):47808-47820. PubMed ID: 27329597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apelin: A putative novel predictive biomarker for bevacizumab response in colorectal cancer.
    Zuurbier L; Rahman A; Cordes M; Scheick J; Wong TJ; Rustenburg F; Joseph JC; Dynoodt P; Casey R; Drillenburg P; Gerhards M; Barat A; Klinger R; Fender B; O'Connor DP; Betge J; Ebert MP; Gaiser T; Prehn JHM; Griffioen AW; van Grieken NCT; Ylstra B; Byrne AT; van der Flier LG; Gallagher WM; Postel R
    Oncotarget; 2017 Jun; 8(26):42949-42961. PubMed ID: 28487489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.