These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33099590)
1. Direct time-resolved detection and quantification of key reactive intermediates in diethyl ether oxidation at T = 450-600 K. Demireva M; Au K; Sheps L Phys Chem Chem Phys; 2020 Nov; 22(42):24649-24661. PubMed ID: 33099590 [TBL] [Abstract][Full Text] [Related]
2. Time-resolved quantification of key species and mechanistic insights in low-temperature tetrahydrofuran oxidation. Demireva M; Au K; Hansen N; Sheps L Phys Chem Chem Phys; 2024 Mar; 26(13):10357-10368. PubMed ID: 38502092 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Detection of Products and Radical Intermediates in Low-Temperature Oxidation of Cyclopentane. Sheps L; Dewyer AL; Demireva M; Zádor J J Phys Chem A; 2021 May; 125(20):4467-4479. PubMed ID: 34006098 [TBL] [Abstract][Full Text] [Related]
4. Quantification of Key Peroxy and Hydroperoxide Intermediates in the Low-Temperature Oxidation of Dimethyl Ether. Couch DE; Mulvihill CR; Sivaramakrishnan R; Au K; Taatjes CA; Sheps L J Phys Chem A; 2022 Dec; 126(50):9497-9509. PubMed ID: 36480708 [TBL] [Abstract][Full Text] [Related]
5. Resonance Stabilization Effects on Ketone Autoxidation: Isomer-Specific Cyclic Ether and Ketohydroperoxide Formation in the Low-Temperature (400-625 K) Oxidation of Diethyl Ketone. Scheer AM; Eskola AJ; Osborn DL; Sheps L; Taatjes CA J Phys Chem A; 2016 Nov; 120(43):8625-8636. PubMed ID: 27726367 [TBL] [Abstract][Full Text] [Related]
6. Influence of the Ether Functional Group on Ketohydroperoxide Formation in Cyclic Hydrocarbons: Tetrahydropyran and Cyclohexane. Davis JC; Koritzke AL; Caravan RL; Antonov IO; Christianson MG; Doner AC; Osborn DL; Sheps L; Taatjes CA; Rotavera B J Phys Chem A; 2019 May; 123(17):3634-3646. PubMed ID: 30865470 [TBL] [Abstract][Full Text] [Related]
7. Isomer-Selective Detection of Keto-Hydroperoxides in the Low-Temperature Oxidation of Tetrahydrofuran. Hansen N; Moshammer K; Jasper AW J Phys Chem A; 2019 Sep; 123(38):8274-8284. PubMed ID: 31483667 [TBL] [Abstract][Full Text] [Related]
8. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane. Rotavera B; Zádor J; Welz O; Sheps L; Scheer AM; Savee JD; Akbar Ali M; Lee TS; Simmons BA; Osborn DL; Violi A; Taatjes CA J Phys Chem A; 2014 Nov; 118(44):10188-200. PubMed ID: 25234586 [TBL] [Abstract][Full Text] [Related]
9. Time-resolved measurements of product formation in the low-temperature (550-675 K) oxidation of neopentane: a probe to investigate chain-branching mechanism. Eskola AJ; Antonov IO; Sheps L; Savee JD; Osborn DL; Taatjes CA Phys Chem Chem Phys; 2017 May; 19(21):13731-13745. PubMed ID: 28503692 [TBL] [Abstract][Full Text] [Related]
10. Absolute photoionization cross sections of two cyclic ketones: cyclopentanone and cyclohexanone. Price C; Fathi Y; Meloni G J Mass Spectrom; 2017 May; 52(5):259-270. PubMed ID: 28231419 [TBL] [Abstract][Full Text] [Related]
11. Absolute Photoionization Cross Section and Dissociative Ionization Pathways of Alpha-Pinene. Rodriguez R; Taatjes CA; Meloni G Chemphyschem; 2024 Mar; 25(6):e202300891. PubMed ID: 38265929 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone. Scheer AM; Welz O; Zádor J; Osborn DL; Taatjes CA Phys Chem Chem Phys; 2014 Jul; 16(26):13027-40. PubMed ID: 24585023 [TBL] [Abstract][Full Text] [Related]
13. Pressure-Dependent Competition among Reaction Pathways from First- and Second-O2 Additions in the Low-Temperature Oxidation of Tetrahydrofuran. Antonov IO; Zádor J; Rotavera B; Papajak E; Osborn DL; Taatjes CA; Sheps L J Phys Chem A; 2016 Aug; 120(33):6582-95. PubMed ID: 27441526 [TBL] [Abstract][Full Text] [Related]
14. Low-Temperature Oxidation Reaction Processes of Cyclopentanone Unraveled by In Situ Mass Spectrometry and Theoretical Study. Jiang Y; Shi Z; Yu J; Wu D; Chen J; Tang Z; Zheng L ACS Omega; 2023 Jun; 8(24):22077-22087. PubMed ID: 37360462 [TBL] [Abstract][Full Text] [Related]
17. New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling. Welz O; Burke MP; Antonov IO; Goldsmith CF; Savee JD; Osborn DL; Taatjes CA; Klippenstein SJ; Sheps L J Phys Chem A; 2015 Jul; 119(28):7116-29. PubMed ID: 25860187 [TBL] [Abstract][Full Text] [Related]
18. Synchrotron Photoionization Study of the Diisopropyl Ether Oxidation. Giustini A; Meloni G Chemphyschem; 2020 May; 21(9):927-937. PubMed ID: 32078232 [TBL] [Abstract][Full Text] [Related]
19. Investigation on the absolute and relative photoionization cross sections of 3 potential propargylic fuels. Winfough M; Meloni G J Mass Spectrom; 2017 Dec; 52(12):799-808. PubMed ID: 28865113 [TBL] [Abstract][Full Text] [Related]