These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33099728)

  • 1. Bigger or Smaller? Size and Loading Effects on Nanoparticle Uptake Efficiency in the Nasal Mucosa.
    Albarki MA; Donovan MD
    AAPS PharmSciTech; 2020 Oct; 21(8):294. PubMed ID: 33099728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and Transport of Ultrafine Nanoparticles (Quantum Dots) in the Nasal Mucosa.
    Bejgum BC; Donovan MD
    Mol Pharm; 2021 Jan; 18(1):429-440. PubMed ID: 33346666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-functionalized nanoparticles for targeted gene delivery across nasal respiratory epithelium.
    Sundaram S; Roy SK; Ambati BK; Kompella UB
    FASEB J; 2009 Nov; 23(11):3752-65. PubMed ID: 19608628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium.
    Mistry A; Stolnik S; Illum L
    Mol Pharm; 2015 Aug; 12(8):2755-66. PubMed ID: 25997083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nose-to-brain delivery of lamotrigine-loaded PLGA nanoparticles.
    Nigam K; Kaur A; Tyagi A; Nematullah M; Khan F; Gabrani R; Dang S
    Drug Deliv Transl Res; 2019 Oct; 9(5):879-890. PubMed ID: 30887226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nasal delivery of nanoencapsulated statins - an approach for brain delivery.
    Clementino A; Batger M; Garrastazu G; Pozzoli M; Del Favero E; Rondelli V; Gutfilen B; Barboza T; Sukkar MB; Souza SA; Cantù L; Sonvico F
    Int J Nanomedicine; 2016; 11():6575-6590. PubMed ID: 27994459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deposition of inhaled nanoparticles in the rat nasal passages: dose to the olfactory region.
    Garcia GJ; Kimbell JS
    Inhal Toxicol; 2009 Dec; 21(14):1165-75. PubMed ID: 19831956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endocytic Uptake of Solid Lipid Nanoparticles by the Nasal Mucosa.
    Al Khafaji AS; Donovan MD
    Pharmaceutics; 2021 May; 13(5):. PubMed ID: 34065558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-in-Micro-Particles Consisting of PLGA Nanoparticles Embedded in Chitosan Microparticles via Spray-Drying Enhances Their Uptake in the Olfactory Mucosa.
    Spindler LM; Feuerhake A; Ladel S; Günday C; Flamm J; Günday-Türeli N; Türeli E; Tovar GEM; Schindowski K; Gruber-Traub C
    Front Pharmacol; 2021; 12():732954. PubMed ID: 34539414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs.
    Clementino AR; Pellegrini G; Banella S; Colombo G; Cantù L; Sonvico F; Del Favero E
    Mol Pharm; 2021 Aug; 18(8):3132-3146. PubMed ID: 34259534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nose-to-brain delivery: evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake.
    Musumeci T; Pellitteri R; Spatuzza M; Puglisi G
    J Pharm Sci; 2014 Feb; 103(2):628-35. PubMed ID: 24395679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PLGA Nanoparticles for Nose to Brain Delivery of Clonazepam: Formulation, Optimization by 32 Factorial Design, In Vitro and In Vivo Evaluation.
    Shah P; Sarolia J; Vyas B; Wagh P; Ankur K; Kumar MA
    Curr Drug Deliv; 2021; 18(6):805-824. PubMed ID: 32640955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery.
    Alex AT; Joseph A; Shavi G; Rao JV; Udupa N
    Drug Deliv; 2016 Sep; 23(7):2144-2153. PubMed ID: 25544603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable intranasal nanoparticulate drug delivery system of risedronate sodium for osteoporosis.
    Fazil M; Hassan MQ; Baboota S; Ali J
    Drug Deliv; 2016 Sep; 23(7):2428-2438. PubMed ID: 25625496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of physicochemical properties on intranasal nanoparticle transit into murine olfactory epithelium.
    Mistry A; Glud SZ; Kjems J; Randel J; Howard KA; Stolnik S; Illum L
    J Drug Target; 2009 Aug; 17(7):543-52. PubMed ID: 19530905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization and differential activity of P-glycoprotein in the bovine olfactory and nasal respiratory mucosae.
    Kandimalla KK; Donovan MD
    Pharm Res; 2005 Jul; 22(7):1121-8. PubMed ID: 16028013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residence time and uptake of porous and cationic maltodextrin-based nanoparticles in the nasal mucosa: Comparison with anionic and cationic nanoparticles.
    Le MQ; Carpentier R; Lantier I; Ducournau C; Dimier-Poisson I; Betbeder D
    Int J Pharm; 2018 Oct; 550(1-2):316-324. PubMed ID: 30171898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new nanovesicular system for nasal drug administration.
    Touitou E; Duchi S; Natsheh H
    Int J Pharm; 2020 Apr; 580():119243. PubMed ID: 32209370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Transport of mPEG-PLGA nanoparticles across the rat nasal mucosa].
    Wang JT; Lin DH; Qin LF; Wen Z; Guo GP
    Yao Xue Xue Bao; 2013 May; 48(5):752-8. PubMed ID: 23888701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems?
    Illum L
    J Pharm Sci; 2007 Mar; 96(3):473-83. PubMed ID: 17117404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.