These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33099864)

  • 41. Utilization of a strong promoter combined with the knockout of protease genes to improve the yield of Vip3Aa in Bacillus thuringiensis BMB171.
    Li X; Zhang Y; Zhan Y; Tian H; Yan B; Cai J
    Pest Manag Sci; 2023 May; 79(5):1713-1720. PubMed ID: 36622044
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancement of Bacillus thuringiensis Cry1Ab and Cry1Fa Toxicity to Spodoptera frugiperda by Domain III Mutations Indicates There Are Two Limiting Steps in Toxicity as Defined by Receptor Binding and Protein Stability.
    Gómez I; Ocelotl J; Sánchez J; Lima C; Martins E; Rosales-Juárez A; Aguilar-Medel S; Abad A; Dong H; Monnerat R; Peña G; Zhang J; Nelson M; Wu G; Bravo A; Soberón M
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097439
    [No Abstract]   [Full Text] [Related]  

  • 43. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua.
    Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C
    J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Insect pathogens as biological control agents: Back to the future.
    Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS
    J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular and insecticidal characterization of a Bacillus thuringiensis strain isolated during a natural epizootic.
    Porcar M; Caballero P
    J Appl Microbiol; 2000 Aug; 89(2):309-16. PubMed ID: 10971764
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The compatibility of Bacillus thuringiensis Cry protein-solubilizing buffers with the droplet feeding method in fall armyworm larvae.
    Chen CY; Bouwer G
    J Invertebr Pathol; 2019 Sep; 166():107233. PubMed ID: 31437438
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The synergistic activity between Cry1Aa and Cry1c from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera.
    Xue JL; Cai QX; Zheng DS; Yuan ZM
    Lett Appl Microbiol; 2005; 40(6):460-5. PubMed ID: 15892743
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Histopathology and the lethal effect of Cry proteins and strains of Bacillus thuringiensis Berliner in Spodoptera frugiperda J.E. Smith Caterpillars (Lepidoptera, Noctuidae).
    Knaak N; Franz AR; Santos GF; Fiuza LM
    Braz J Biol; 2010 Aug; 70(3):677-84. PubMed ID: 20730357
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proteolytic activation of Bacillus thuringiensis Vip3Aa protein by Spodoptera exigua midgut protease.
    Zhang J; Pan ZZ; Xu L; Liu B; Chen Z; Li J; Niu LY; Zhu YJ; Chen QX
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1220-1226. PubMed ID: 28970168
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Performance insights into spray-dryer microencapsulated Bacillus thuringiensis cry pesticidal proteins with gum arabic and maltodextrin for effective pest control.
    de Oliveira JL; Gómez I; Sánchez J; Soberón M; Polanczyk RA; Bravo A
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):181. PubMed ID: 38285209
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combinational Effect of
    Mhalla D; Ben Farhat-Touzri D; Tounsi S; Trigui M
    Biomed Res Int; 2018; 2018():3895834. PubMed ID: 30175130
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of chimeric Bacillus thuringiensis Vip3 toxins.
    Fang J; Xu X; Wang P; Zhao JZ; Shelton AM; Cheng J; Feng MG; Shen Z
    Appl Environ Microbiol; 2007 Feb; 73(3):956-61. PubMed ID: 17122403
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm.
    Silva MC; Siqueira HA; Silva LM; Marques EJ; Barros R
    Neotrop Entomol; 2015 Aug; 44(4):392-401. PubMed ID: 26070631
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.
    BenFarhat-Touzri D; Saadaoui M; Abdelkefi-Mesrati L; Saadaoui I; Azzouz H; Tounsi S
    J Invertebr Pathol; 2013 Feb; 112(2):142-5. PubMed ID: 23220238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicity and Binding Studies of Bacillus thuringiensis Cry1Ac, Cry1F, Cry1C, and Cry2A Proteins in the Soybean Pests Anticarsia gemmatalis and Chrysodeixis (Pseudoplusia) includens.
    Bel Y; Sheets JJ; Tan SY; Narva KE; Escriche B
    Appl Environ Microbiol; 2017 Jun; 83(11):. PubMed ID: 28363958
    [No Abstract]   [Full Text] [Related]  

  • 56. Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to northwestern Indian Himalayas and their synergistic toxicity with selected insecticides.
    Subbanna ARNS; Chandrashekara C; Stanley J; Mishra KK; Mishra PK; Pattanayak A
    Pestic Biochem Physiol; 2019 Jul; 158():166-174. PubMed ID: 31378353
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synergistic effects of Cydia pomonella granulovirus GP37 on the infectivity of nucleopolyhedroviruses and the lethality of Bacillus thuringiensis.
    Liu X; Ma X; Lei C; Xiao Y; Zhang Z; Sun X
    Arch Virol; 2011 Oct; 156(10):1707-15. PubMed ID: 21643992
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of Bacillus thuringiensis toxins for control of the cotton pest Earias insulana (Boisd.) (Lepidoptera: Noctuidae).
    Ibargutxi MA; Estela A; Ferré J; Caballero P
    Appl Environ Microbiol; 2006 Jan; 72(1):437-42. PubMed ID: 16391075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. TOXiTAXi: a web resource for toxicity of Bacillus thuringiensis protein compositions towards species of various taxonomic groups.
    Baranek J; Pogodziński B; Szipluk N; Zielezinski A
    Sci Rep; 2020 Nov; 10(1):19767. PubMed ID: 33188218
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacillus thuringiensis insecticidal crystal proteins affect lifespan and reproductive performance of Helicoverpa armigera and Spodoptera exigua adults.
    Zhang Y; Ma Y; Wan PJ; Mu LL; Li GQ
    J Econ Entomol; 2013 Apr; 106(2):614-21. PubMed ID: 23786046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.