These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33100891)

  • 21. Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers.
    Boldog T; Li M; Hazelbauer GL
    Methods Enzymol; 2007; 423():317-35. PubMed ID: 17609138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigating Antimicrobial Peptide-Membrane Interactions Using Fast Photochemical Oxidation of Peptides in Nanodiscs.
    Reid DJ; Rohrbough JG; Kostelic MM; Marty MT
    J Am Soc Mass Spectrom; 2022 Jan; 33(1):62-67. PubMed ID: 34866389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of Lipid Nanodiscs with Lipid Mixtures.
    Li MJ; Atkins WM; McClary WD
    Curr Protoc Protein Sci; 2019 Dec; 98(1):e100. PubMed ID: 31746556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes.
    Ter Beek J; Kahle M; Ädelroth P
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1951-1961. PubMed ID: 28668220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring Remodeling of the Lipid Environment Surrounding Membrane Proteins with Lipid Exchange and Native Mass Spectrometry.
    Zhang G; Keener JE; Marty MT
    Anal Chem; 2020 Apr; 92(8):5666-5669. PubMed ID: 32250609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beyond detergent micelles: The advantages and applications of non-micellar and lipid-based membrane mimetics for solution-state NMR.
    Klöpfer K; Hagn F
    Prog Nucl Magn Reson Spectrosc; 2019; 114-115():271-283. PubMed ID: 31779883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Revealing the Specificity of a Range of Antimicrobial Peptides in Lipid Nanodiscs by Native Mass Spectrometry.
    Walker LR; Marty MT
    Biochemistry; 2020 Jun; 59(23):2135-2142. PubMed ID: 32452672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detergent-free Lipodisq Nanoparticles Facilitate High-Resolution Mass Spectrometry of Folded Integral Membrane Proteins.
    Hoi KK; Bada Juarez JF; Judge PJ; Yen HY; Wu D; Vinals J; Taylor GF; Watts A; Robinson CV
    Nano Lett; 2021 Apr; 21(7):2824-2831. PubMed ID: 33787280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs.
    Redhair M; Clouser AF; Atkins WM
    Chem Phys Lipids; 2019 May; 220():14-22. PubMed ID: 30802434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH Tunable and Divalent Metal Ion Tolerant Polymer Lipid Nanodiscs.
    Ravula T; Hardin NZ; Ramadugu SK; Ramamoorthy A
    Langmuir; 2017 Oct; 33(40):10655-10662. PubMed ID: 28920693
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanodisc-Based Proteomics Identify Caj1 as an Hsp40 with Affinity for Phosphatidic Acid Lipids.
    Zhang XX; Young JW; Foster LJ; Duong F
    J Proteome Res; 2021 Oct; 20(10):4831-4839. PubMed ID: 34519218
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultra-thin layer MALDI mass spectrometry of membrane proteins in nanodiscs.
    Marty MT; Das A; Sligar SG
    Anal Bioanal Chem; 2012 Jan; 402(2):721-9. PubMed ID: 22057720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering Nanodisc Scaffold Proteins for Native Mass Spectrometry.
    Reid DJ; Keener JE; Wheeler AP; Zambrano DE; Diesing JM; Reinhardt-Szyba M; Makarov A; Marty MT
    Anal Chem; 2017 Nov; 89(21):11189-11192. PubMed ID: 29048874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DIBMA nanodiscs keep α-synuclein folded.
    Adão R; Cruz PF; Vaz DC; Fonseca F; Pedersen JN; Ferreira-da-Silva F; Brito RMM; Ramos CHI; Otzen D; Keller S; Bastos M
    Biochim Biophys Acta Biomembr; 2020 Sep; 1862(9):183314. PubMed ID: 32304757
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution of Na(+),K(+)-ATPase in Nanodiscs.
    Gregersen JL; Fedosova NU; Nissen P; Boesen T
    Methods Mol Biol; 2016; 1377():403-9. PubMed ID: 26695051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRAFTing Delivery of Membrane Proteins into Protocells using Nanodiscs.
    Stępień P; Świątek S; Robles MYY; Markiewicz-Mizera J; Balakrishnan D; Inaba-Inoue S; De Vries AH; Beis K; Marrink SJ; Heddle JG
    ACS Appl Mater Interfaces; 2023 Nov; 15(49):56689-701. PubMed ID: 38015973
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elucidating the Lipid Binding Properties of Membrane-Active Peptides Using Cyclised Nanodiscs.
    Zhang AH; Edwards IA; Mishra BP; Sharma G; Healy MD; Elliott AG; Blaskovich MAT; Cooper MA; Collins BM; Jia X; Mobli M
    Front Chem; 2019; 7():238. PubMed ID: 31058133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid Nanodiscs as a Tool for High-Resolution Structure Determination of Membrane Proteins by Single-Particle Cryo-EM.
    Efremov RG; Gatsogiannis C; Raunser S
    Methods Enzymol; 2017; 594():1-30. PubMed ID: 28779836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid-Bilayer Nanodiscs.
    Bibow S; Böhm R; Modaresi SM; Hiller S
    Anal Chem; 2020 Jun; 92(11):7786-7793. PubMed ID: 32378880
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing the structure of nanodiscs using surface-induced dissociation mass spectrometry.
    Harvey SR; VanAernum ZL; Kostelic MM; Marty MT; Wysocki VH
    Chem Commun (Camb); 2020 Dec; 56(100):15651-15654. PubMed ID: 33355562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.