BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 33101330)

  • 1. Understanding the Impact of Cultivar, Seed Origin, and Substrate on Bacterial Diversity of the Sugar Beet Rhizosphere and Suppression of Soil-Borne Pathogens.
    Wolfgang A; Zachow C; Müller H; Grand A; Temme N; Tilcher R; Berg G
    Front Plant Sci; 2020; 11():560869. PubMed ID: 33101330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age-Dependent Resistance to
    Liu Y; Qi A; Khan MFR
    Plant Dis; 2019 Sep; 103(9):2322-2329. PubMed ID: 31298993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Rhizoctonia solani diseases of sugar beet by antagonistic and plant growth-promoting yeasts.
    El-Tarabily KA
    J Appl Microbiol; 2004; 96(1):69-75. PubMed ID: 14678160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens.
    Rybakova D; Mancinelli R; Wikström M; Birch-Jensen AS; Postma J; Ehlers RU; Goertz S; Berg G
    Microbiome; 2017 Sep; 5(1):104. PubMed ID: 28859671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizosphere competent inoculants modulate the apple root-associated microbiome and plant phytoalexins.
    Hauschild K; Orth N; Liu B; Giongo A; Gschwendtner S; Beerhues L; Schloter M; Vetterlein D; Winkelmann T; Smalla K
    Appl Microbiol Biotechnol; 2024 May; 108(1):344. PubMed ID: 38801472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus amyloliquefaciens SB14 from rhizosphere alleviates Rhizoctonia damping-off disease on sugar beet.
    Karimi E; Safaie N; Shams-Baksh M; Mahmoudi B
    Microbiol Res; 2016 Nov; 192():221-230. PubMed ID: 27664740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of Sugar Beet Rhizoctonia Crown and Root Rot Caused by Rhizoctonia solani AG-2-2IIIB in Shanxi Province of China.
    Zhao C; Wu XH
    Plant Dis; 2014 Mar; 98(3):419. PubMed ID: 30708416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the sugar beet holobiont for sustainable agriculture.
    Wolfgang A; Temme N; Tilcher R; Berg G
    Front Microbiol; 2023; 14():1151052. PubMed ID: 37138624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of Rhizoctonia solani in Sugar Beet and Effect of Fungicide Application and Plant Cultivar on Inoculum Potential in the Soil.
    Bartholomäus A; Mittler S; Märländer B; Varrelmann M
    Plant Dis; 2017 Jun; 101(6):941-947. PubMed ID: 30682924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into Endophytic and Rhizospheric Bacteria of Five Sugar Beet Hybrids in Terms of Their Diversity, Plant-Growth Promoting, and Biocontrol Properties.
    Petrović M; Janakiev T; Grbić ML; Unković N; Stević T; Vukićević S; Dimkić I
    Microb Ecol; 2023 Dec; 87(1):19. PubMed ID: 38148389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tomato Cultivars With Variable Tolerances to Water Deficit Differentially Modulate the Composition and Interaction Patterns of Their Rhizosphere Microbial Communities.
    Gaete A; Pulgar R; Hodar C; Maldonado J; Pavez L; Zamorano D; Pastenes C; González M; Franck N; Mandakovic D
    Front Plant Sci; 2021; 12():688533. PubMed ID: 34326856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different responses of the rhizosphere microbiome to
    Tie Z; Wang P; Chen W; Tang B; Yu Y; Liu Z; Zhao S; Khan FH; Zhang X; Xi H
    Front Microbiol; 2023; 14():1229454. PubMed ID: 37637103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizosphere community selection reveals bacteria associated with reduced root disease.
    Yin C; Casa Vargas JM; Schlatter DC; Hagerty CH; Hulbert SH; Paulitz TC
    Microbiome; 2021 Apr; 9(1):86. PubMed ID: 33836842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fungal invasion of the rhizosphere microbiome.
    Chapelle E; Mendes R; Bakker PA; Raaijmakers JM
    ISME J; 2016 Jan; 10(1):265-8. PubMed ID: 26023875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The treasure inside barley seeds: microbial diversity and plant beneficial bacteria.
    Bziuk N; Maccario L; Straube B; Wehner G; Sørensen SJ; Schikora A; Smalla K
    Environ Microbiome; 2021 Oct; 16(1):20. PubMed ID: 34711269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivar-specific dynamics: unravelling rhizosphere microbiome responses to water deficit stress in potato cultivars.
    Martins BR; Siani R; Treder K; Michałowska D; Radl V; Pritsch K; Schloter M
    BMC Microbiol; 2023 Dec; 23(1):377. PubMed ID: 38036970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection for Resistance to the Rhizoctonia-Bacterial Root Rot Complex in Sugar Beet.
    Strausbaugh CA; Eujayl IA; Foote P
    Plant Dis; 2013 Jan; 97(1):93-100. PubMed ID: 30722263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominant Groups of Potentially Active Bacteria Shared by Barley Seeds become Less Abundant in Root Associated Microbiome.
    Yang L; Danzberger J; Schöler A; Schröder P; Schloter M; Radl V
    Front Plant Sci; 2017; 8():1005. PubMed ID: 28663753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heritable Variation in Pea for Resistance Against a Root Rot Complex and Its Characterization by Amplicon Sequencing.
    Wille L; Messmer MM; Bodenhausen N; Studer B; Hohmann P
    Front Plant Sci; 2020; 11():542153. PubMed ID: 33224157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Inoculum Density and Cultivar Susceptibility on Rhizoctonia Damping-Off and Crown and Root Rot in Sugar Beet.
    Brantner JR; Chanda AK
    Plant Dis; 2021 Apr; 105(4):1019-1025. PubMed ID: 32976076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.