BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33101372)

  • 1. Functional Characterization of a Novel Oxidative Stress Protection Protein in the Pathogenic Yeast
    Usher J; Chaudhari Y; Attah V; Ho HL; Haynes K
    Front Genet; 2020; 11():530915. PubMed ID: 33101372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Candida and candidaemia. Susceptibility and epidemiology.
    Arendrup MC
    Dan Med J; 2013 Nov; 60(11):B4698. PubMed ID: 24192246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment.
    Jensen RH
    Dan Med J; 2016 Oct; 63(10):. PubMed ID: 27697142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deubiquitination module is critical for oxidative stress response and biofilm formation in Candida glabrata.
    Huang YH; Lee YH; Lin CJ; Hsu LH; Chen YL
    Med Mycol; 2023 Oct; 61(10):. PubMed ID: 37844959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The monoamine oxidase A inhibitor clorgyline is a broad-spectrum inhibitor of fungal ABC and MFS transporter efflux pump activities which reverses the azole resistance of Candida albicans and Candida glabrata clinical isolates.
    Holmes AR; Keniya MV; Ivnitski-Steele I; Monk BC; Lamping E; Sklar LA; Cannon RD
    Antimicrob Agents Chemother; 2012 Mar; 56(3):1508-15. PubMed ID: 22203607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Genotyping of Vaginal Candida glabrata Isolates Using Microsatellite Marker Analysis and DNA Sequencing to Identify Mutations Associated with Antifungal Resistance].
    Döğen A; Durukan H; Güzel AB; Oksüz Z; Kaplan E; Serin MS; Serin A; Emekdaş G; Aslan G; Tezcan S; Kalkancı A; Ilkit M
    Mikrobiyol Bul; 2013 Jan; 47(1):109-21. PubMed ID: 23390908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies.
    Vermitsky JP; Earhart KD; Smith WL; Homayouni R; Edlind TD; Rogers PD
    Mol Microbiol; 2006 Aug; 61(3):704-22. PubMed ID: 16803598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen
    López-Ramos JE; Bautista E; Gutiérrez-Escobedo G; Mancilla-Montelongo G; Castaño I; González-Chávez MM; De Las Peñas A
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34202061
    [No Abstract]   [Full Text] [Related]  

  • 9. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata.
    Cuéllar-Cruz M; Castaño I; Arroyo-Helguera O; De Las Peñas A
    Mem Inst Oswaldo Cruz; 2009 Jul; 104(4):649-54. PubMed ID: 19722092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifactorial Role of Mitochondria in Echinocandin Tolerance Revealed by Transcriptome Analysis of Drug-Tolerant Cells.
    Garcia-Rubio R; Jimenez-Ortigosa C; DeGregorio L; Quinteros C; Shor E; Perlin DS
    mBio; 2021 Aug; 12(4):e0195921. PubMed ID: 34372698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Noncanonical DNA Damage Checkpoint Response in a Major Fungal Pathogen.
    Shor E; Garcia-Rubio R; DeGregorio L; Perlin DS
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tec1 and Ste12 transcription factors play a role in adaptation to low pH stress and biofilm formation in the human opportunistic fungal pathogen Candida glabrata.
    Purohit D; Gajjar D
    Int Microbiol; 2022 Nov; 25(4):789-802. PubMed ID: 35829973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage response of major fungal pathogen Candida glabrata offers clues to explain its genetic diversity.
    Shor E; Perlin DS
    Curr Genet; 2021 Jun; 67(3):439-445. PubMed ID: 33620543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new regulator in the crossroads of oxidative stress resistance and virulence in
    Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC
    Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521
    [No Abstract]   [Full Text] [Related]  

  • 15. UPC2A is required for high-level azole antifungal resistance in Candida glabrata.
    Whaley SG; Caudle KE; Vermitsky JP; Chadwick SG; Toner G; Barker KS; Gygax SE; Rogers PD
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4543-54. PubMed ID: 24867980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients.
    Tantivitayakul P; Lapirattanakul J; Kaypetch R; Muadcheingka T
    J Glob Antimicrob Resist; 2019 Jun; 17():221-226. PubMed ID: 30658200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery.
    Keniya MV; Ruma YN; Tyndall JDA; Monk BC
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30126959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae.
    Zavrel M; Hoot SJ; White TC
    Eukaryot Cell; 2013 May; 12(5):725-38. PubMed ID: 23475705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inner kinetochore of the pathogenic yeast Candida glabrata.
    Stoyan T; Carbon J
    Eukaryot Cell; 2004 Oct; 3(5):1154-63. PubMed ID: 15470243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in
    Whaley SG; Caudle KE; Simonicova L; Zhang Q; Moye-Rowley WS; Rogers PD
    mSphere; 2018; 3(1):. PubMed ID: 29507891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.