BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33101398)

  • 1. RWRNET: A Gene Regulatory Network Inference Algorithm Using Random Walk With Restart.
    Liu W; Sun X; Peng L; Zhou L; Lin H; Jiang Y
    Front Genet; 2020; 11():591461. PubMed ID: 33101398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring Gene Regulatory Networks Using the Improved Markov Blanket Discovery Algorithm.
    Liu W; Jiang Y; Peng L; Sun X; Gan W; Zhao Q; Tang H
    Interdiscip Sci; 2022 Mar; 14(1):168-181. PubMed ID: 34495484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NSCGRN: a network structure control method for gene regulatory network inference.
    Liu W; Sun X; Yang L; Li K; Yang Y; Fu X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35554485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing gene regulatory networks inference through hub-based data integration.
    Naseri A; Sharghi M; Hasheminejad SMH
    Comput Biol Chem; 2021 Dec; 95():107589. PubMed ID: 34673384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NSRGRN: a network structure refinement method for gene regulatory network inference.
    Liu W; Yang Y; Lu X; Fu X; Sun R; Yang L; Peng L
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37078865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A scalable random walk with restart on heterogeneous networks with Apache Spark for ranking disease-related genes through type-II fuzzy data fusion.
    Joodaki M; Ghadiri N; Maleki Z; Lotfi Shahreza M
    J Biomed Inform; 2021 Mar; 115():103688. PubMed ID: 33545331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inferring new indications for approved drugs via random walk on drug-disease heterogenous networks.
    Liu H; Song Y; Guan J; Luo L; Zhuang Z
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):539. PubMed ID: 28155639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion prior gene network for high reliable single-cell gene regulatory network inference.
    Zhang Y; He Y; Chen Q; Yang Y; Gong M
    Comput Biol Med; 2022 Apr; 143():105279. PubMed ID: 35134605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene regulatory network inference using PLS-based methods.
    Guo S; Jiang Q; Chen L; Guo D
    BMC Bioinformatics; 2016 Dec; 17(1):545. PubMed ID: 28031031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Markov-blanket-based model for gene regulatory network inference.
    Ram R; Chetty M
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(2):353-67. PubMed ID: 21233520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of drug-target interaction by a random walk with restart method on an interactome network.
    Lee I; Nam H
    BMC Bioinformatics; 2018 Jun; 19(Suppl 8):208. PubMed ID: 29897326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets.
    Liu LZ; Wu FX; Zhang WJ
    BMC Syst Biol; 2014; 8 Suppl 3(Suppl 3):S1. PubMed ID: 25350697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inference of Gene Regulatory Network Based on Local Bayesian Networks.
    Liu F; Zhang SW; Guo WF; Wei ZG; Chen L
    PLoS Comput Biol; 2016 Aug; 12(8):e1005024. PubMed ID: 27479082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying cancer driver genes using a two-stage random walk with restart on a gene interaction network.
    Meng P; Wang G; Guo H; Jiang T
    Comput Biol Med; 2023 May; 158():106810. PubMed ID: 37011433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory network inference: evaluation and application to ovarian cancer allows the prioritization of drug targets.
    Madhamshettiwar PB; Maetschke SR; Davis MJ; Reverter A; Ragan MA
    Genome Med; 2012 May; 4(5):41. PubMed ID: 22548828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-based method for mining novel HPV infection related genes using random walk with restart algorithm.
    Zhu L; Su F; Xu Y; Zou Q
    Biochim Biophys Acta Mol Basis Dis; 2018 Jun; 1864(6 Pt B):2376-2383. PubMed ID: 29197659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-dimensional data integration algorithm based on random walk with restart.
    Wen Y; Song X; Yan B; Yang X; Wu L; Leng D; He S; Bo X
    BMC Bioinformatics; 2021 Feb; 22(1):97. PubMed ID: 33639858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs.
    Le DH; Verbeke L; Son LH; Chu DT; Pham VH
    BMC Bioinformatics; 2017 Nov; 18(1):479. PubMed ID: 29137601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.