These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33101885)

  • 1. Dynamics of respiratory droplets carrying SARS-CoV-2 virus in closed atmosphere.
    Shadloo-Jahromi A; Bavi O; Hossein Heydari M; Kharati-Koopaee M; Avazzadeh Z
    Results Phys; 2020 Dec; 19():103482. PubMed ID: 33101885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ambient temperature and humidity on droplet lifetime - A perspective of exhalation sneeze droplets with COVID-19 virus transmission.
    Chen LD
    Int J Hyg Environ Health; 2020 Aug; 229():113568. PubMed ID: 32615522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding lifetime and dispersion of cough-emitted droplets in air.
    Lordly K; Kober L; Jadidi M; Antoun S; Dworkin SB; Karataş AE
    Indoor Built Environ; 2023 Dec; 32(10):1929-1948. PubMed ID: 38023440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why airborne transmission hasn't been conclusive in case of COVID-19? An atmospheric science perspective.
    Ram K; Thakur RC; Singh DK; Kawamura K; Shimouchi A; Sekine Y; Nishimura H; Singh SK; Pavuluri CM; Singh RS; Tripathi SN
    Sci Total Environ; 2021 Jun; 773():145525. PubMed ID: 33940729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of indoor environmental conditions on airborne transmission and lifetime of sneeze droplets in a confined space: a way to reduce COVID-19 spread.
    Bahramian A
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44067-44085. PubMed ID: 36680724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of indoor temperature on the velocity fields and airborne transmission of sneeze droplets: An experimental study and transient CFD modeling.
    Bahramian A; Mohammadi M; Ahmadi G
    Sci Total Environ; 2023 Feb; 858(Pt 2):159444. PubMed ID: 36252673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms controlling the transport and evaporation of human exhaled respiratory droplets containing the severe acute respiratory syndrome coronavirus: a review.
    Norvihoho LK; Yin J; Zhou ZF; Han J; Chen B; Fan LH; Lichtfouse E
    Environ Chem Lett; 2023; 21(3):1701-1727. PubMed ID: 36846189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaporation flow characteristics of airborne sputum droplets with solid fraction: Effects of humidity field evolutions.
    Zeng G; Chen L; Yuan H; Yamamoto A; Maruyama S
    Phys Fluids (1994); 2021 Dec; 33(12):123308. PubMed ID: 35002203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How human thermal plume influences near-human transport of respiratory droplets and airborne particles: a review.
    Sun S; Li J; Han J
    Environ Chem Lett; 2021; 19(3):1971-1982. PubMed ID: 33495695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectories of large respiratory droplets in indoor environment: A simplified approach.
    Cheng CH; Chow CL; Chow WK
    Build Environ; 2020 Oct; 183():107196. PubMed ID: 32836704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing suspension and infectivity times of virus-loaded aerosols involved in airborne transmission.
    Merhi T; Atasi O; Coetsier C; Lalanne B; Roger K
    Proc Natl Acad Sci U S A; 2022 Aug; 119(32):e2204593119. PubMed ID: 35930663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaporation and dispersion of respiratory droplets from coughing.
    Liu L; Wei J; Li Y; Ooi A
    Indoor Air; 2017 Jan; 27(1):179-190. PubMed ID: 26945674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport dynamics of SARS-CoV-2 under outdoor conditions.
    Aydin M; Evrendilek F; Aydin IE; Savas SA; Evrendilek DE
    Air Qual Atmos Health; 2022; 15(5):893-899. PubMed ID: 35401876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Lifetime of Respiratory Droplets in a Turbulent Vapor Puff and Its Implications on Airborne Disease Transmission.
    Chong KL; Ng CS; Hori N; Yang R; Verzicco R; Lohse D
    Phys Rev Lett; 2021 Jan; 126(3):034502. PubMed ID: 33543958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the interactions of sneezing droplets with particulate matter in a polluted environment.
    Dey P; Saha SK; Sarkar S
    Phys Fluids (1994); 2021 Nov; 33(11):113310. PubMed ID: 34803363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Viral kinetics and exhaled droplet size affect indoor transmission dynamics of influenza infection.
    Chen SC; Chio CP; Jou LJ; Liao CM
    Indoor Air; 2009 Oct; 19(5):401-13. PubMed ID: 19659895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into the evaporation characteristics of saliva droplets and aerosols: Levitation experiments and numerical modeling.
    Lieber C; Melekidis S; Koch R; Bauer HJ
    J Aerosol Sci; 2021 May; 154():105760. PubMed ID: 33518792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersion of sneeze droplets in a meat facility indoor environment - Without partitions.
    Kumar S; Klassen M; Klassen D; Hardin R; King MD
    Environ Res; 2023 Nov; 236(Pt 1):116603. PubMed ID: 37454802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of the transport, hygroscopic growth, and deposition of multi-component droplets in a simplified airway with realistic thermal boundary conditions.
    Chen X; Zhou X; Xia X; Xie X; Lu P; Feng Y
    J Aerosol Sci; 2021 Jan; 151():105626. PubMed ID: 32836373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of airborne sputum droplets flow dynamic behaviors under different ambient conditions and aerosol size effects.
    Zeng G; Chen L; Yuan H; Yamamoto A; Chen H; Maruyama S
    Chemosphere; 2022 Nov; 307(Pt 1):135708. PubMed ID: 35850221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.