BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33102465)

  • 21. [Advances in the raw material selection and functional design of artificial nerve guidance conduits].
    Liu J; Wang J; Wang L
    Sheng Wu Gong Cheng Xue Bao; 2023 Oct; 39(10):4057-4074. PubMed ID: 37877390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Harnessing Nanotopography of Electrospun Nanofibrous Nerve Guide Conduits (NGCs) for Neural Tissue Engineering.
    Kim JI; Kim CS; Park CH
    Adv Exp Med Biol; 2018; 1078():395-408. PubMed ID: 30357634
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a regenerative porous PLCL nerve guidance conduit with swellable hydrogel-based microgrooved surface pattern via 3D printing.
    Lee HS; Jeon EY; Nam JJ; Park JH; Choi IC; Kim SH; Chung JJ; Lee K; Park JW; Jung Y
    Acta Biomater; 2022 Mar; 141():219-232. PubMed ID: 35081432
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit.
    Carvalho CR; Oliveira JM; Reis RL
    Front Bioeng Biotechnol; 2019; 7():337. PubMed ID: 31824934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli.
    Sarker MD; Naghieh S; McInnes AD; Schreyer DJ; Chen X
    Prog Neurobiol; 2018 Dec; 171():125-150. PubMed ID: 30077776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-Printed PCL/PPy Conductive Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair.
    Vijayavenkataraman S; Kannan S; Cao T; Fuh JYH; Sriram G; Lu WF
    Front Bioeng Biotechnol; 2019; 7():266. PubMed ID: 31750293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.
    Chiono V; Tonda-Turo C
    Prog Neurobiol; 2015 Aug; 131():87-104. PubMed ID: 26093353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradable polyurethane nerve guide conduits with different moduli influence axon regeneration in transected peripheral nerve injury.
    Wang Y; Liang R; Lin J; Chen J; Zhang Q; Li J; Wang M; Hui X; Tan H; Fu Q
    J Mater Chem B; 2021 Oct; 9(38):7979-7990. PubMed ID: 34612287
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preclinical study of peripheral nerve regeneration using nerve guidance conduits based on polyhydroxyalkanaotes.
    Lizarraga-Valderrama LR; Ronchi G; Nigmatullin R; Fregnan F; Basnett P; Paxinou A; Geuna S; Roy I
    Bioeng Transl Med; 2021 Sep; 6(3):e10223. PubMed ID: 34589600
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conductive and alignment-optimized porous fiber conduits with electrical stimulation for peripheral nerve regeneration.
    Liu K; Yan S; Liu Y; Liu J; Li R; Zhao L; Liu B
    Mater Today Bio; 2024 Jun; 26():101064. PubMed ID: 38698883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A grooved conduit combined with decellularized tissues for peripheral nerve regeneration.
    Yu E; Chen Z; Huang Y; Wu Y; Wang Z; Wang F; Wu M; Xu K; Peng W
    J Mater Sci Mater Med; 2023 Jul; 34(7):35. PubMed ID: 37477830
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel 3-D helix-flexible nerve guide conduits repair nerve defects.
    Quan Q; Meng H; Chang B; Hong L; Li R; Liu G; Cheng X; Tang H; Liu P; Sun Y; Peng J; Zhao Q; Wang Y; Lu S
    Biomaterials; 2019 Jul; 207():49-60. PubMed ID: 30954885
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Shen J; Wang J; Liu X; Sun Y; Yin A; Chai Y; Zhang K; Wang C; Zheng X
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):50785-50801. PubMed ID: 34664947
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury.
    Shlapakova LE; Botvin VV; Mukhortova YR; Zharkova II; Alipkina SI; Zeltzer A; Dudun AA; Makhina T; Bonartseva GA; Voinova VV; Wagner DV; Pariy I; Bonartsev AP; Surmenev RA; Surmeneva MA
    ACS Appl Bio Mater; 2024 Feb; 7(2):1095-1114. PubMed ID: 38270084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peripheral nerve injury repair by electrical stimulation combined with graphene-based scaffolds.
    Zhao Y; Liu Y; Kang S; Sun D; Liu Y; Wang X; Lu L
    Front Bioeng Biotechnol; 2024; 12():1345163. PubMed ID: 38481574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair.
    Vijayavenkataraman S; Zhang S; Thaharah S; Sriram G; Lu WF; Fuh JYH
    Polymers (Basel); 2018 Jul; 10(7):. PubMed ID: 30960678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Electrospun Nerve Guidance Conduits for Engineering Neural Regeneration.
    Behtaj S; Ekberg JAK; St John JA
    Pharmaceutics; 2022 Jan; 14(2):. PubMed ID: 35213952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chitosan-based nerve guidance conduit with microchannels and nanofibers promotes schwann cells migration and neurite growth.
    Zhou G; Chen Y; Dai F; Yu X
    Colloids Surf B Biointerfaces; 2023 Jan; 221():112929. PubMed ID: 36334516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing of functional nerve guide conduits.
    Huang Y; Wu W; Liu H; Chen Y; Li B; Gou Z; Li X; Gou M
    Burns Trauma; 2021; 9():tkab011. PubMed ID: 34212061
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of small intestine submucosa and poly(caprolactone-co-lactide) conduits for peripheral nerve regeneration.
    Shim SW; Kwon DY; Lee BN; Kwon JS; Park JH; Lee JH; Kim JH; Lee IW; Shin JW; Lee HB; Kim WD; Kim MS
    Tissue Eng Part A; 2015 Mar; 21(5-6):1142-51. PubMed ID: 25435200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.