These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33102477)

  • 21. DeepUbi: a deep learning framework for prediction of ubiquitination sites in proteins.
    Fu H; Yang Y; Wang X; Wang H; Xu Y
    BMC Bioinformatics; 2019 Feb; 20(1):86. PubMed ID: 30777029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DeepIPs: comprehensive assessment and computational identification of phosphorylation sites of SARS-CoV-2 infection using a deep learning-based approach.
    Lv H; Dao FY; Zulfiqar H; Lin H
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34184738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gene2vec: gene subsequence embedding for prediction of mammalian
    Zou Q; Xing P; Wei L; Liu B
    RNA; 2019 Feb; 25(2):205-218. PubMed ID: 30425123
    [No Abstract]   [Full Text] [Related]  

  • 24. DeepCap-Kcr: accurate identification and investigation of protein lysine crotonylation sites based on capsule network.
    Khanal J; Tayara H; Zou Q; To Chong K
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34882222
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepKla: An attention mechanism-based deep neural network for protein lysine lactylation site prediction.
    Lv H; Dao FY; Lin H
    Imeta; 2022 Mar; 1(1):e11. PubMed ID: 38867734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Public Perception Analysis of Tweets During the 2015 Measles Outbreak: Comparative Study Using Convolutional Neural Network Models.
    Du J; Tang L; Xiang Y; Zhi D; Xu J; Song HY; Tao C
    J Med Internet Res; 2018 Jul; 20(7):e236. PubMed ID: 29986843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An integration of deep learning with feature embedding for protein-protein interaction prediction.
    Yao Y; Du X; Diao Y; Zhu H
    PeerJ; 2019; 7():e7126. PubMed ID: 31245182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SpliceFinder: ab initio prediction of splice sites using convolutional neural network.
    Wang R; Wang Z; Wang J; Li S
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):652. PubMed ID: 31881982
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PseUdeep: RNA Pseudouridine Site Identification with Deep Learning Algorithm.
    Zhuang J; Liu D; Lin M; Qiu W; Liu J; Chen S
    Front Genet; 2021; 12():773882. PubMed ID: 34868261
    [No Abstract]   [Full Text] [Related]  

  • 31. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EDLm
    Zhang L; Li G; Li X; Wang H; Chen S; Liu H
    BMC Bioinformatics; 2021 May; 22(1):288. PubMed ID: 34051729
    [TBL] [Abstract][Full Text] [Related]  

  • 33. prPred-DRLF: Plant R protein predictor using deep representation learning features.
    Wang Y; Xu L; Zou Q; Lin C
    Proteomics; 2022 Jan; 22(1-2):e2100161. PubMed ID: 34569713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. iPseU-CNN: Identifying RNA Pseudouridine Sites Using Convolutional Neural Networks.
    Tahir M; Tayara H; Chong KT
    Mol Ther Nucleic Acids; 2019 Jun; 16():463-470. PubMed ID: 31048185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sitetack: A Deep Learning Model that Improves PTM Prediction by Using Known PTMs.
    Gutierrez CS; Kassim AA; Gutierrez BD; Raines RT
    bioRxiv; 2024 Jun; ():. PubMed ID: 38895359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting the effect of variants on splicing using Convolutional Neural Networks.
    Thanapattheerakul T; Engchuan W; Chan JH
    PeerJ; 2020; 8():e9470. PubMed ID: 32704450
    [TBL] [Abstract][Full Text] [Related]  

  • 38. HybridSucc: A Hybrid-learning Architecture for General and Species-specific Succinylation Site Prediction.
    Ning W; Xu H; Jiang P; Cheng H; Deng W; Guo Y; Xue Y
    Genomics Proteomics Bioinformatics; 2020 Apr; 18(2):194-207. PubMed ID: 32861878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Organ Plant Classification Based on Convolutional and Recurrent Neural Networks.
    Lee SH; Chan CS; Remagnino P
    IEEE Trans Image Process; 2018 Sep; 27(9):4287-4301. PubMed ID: 29870348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites.
    Chang X; Zhu Y; Chen Y; Li L
    Comput Biol Med; 2024 Mar; 170():108079. PubMed ID: 38295472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.