These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 33102621)

  • 1. Whole mammographic mass segmentation using attention mechanism and multiscale pooling adversarial network.
    Wang Y; Wang S; Chen J; Wu C
    J Med Imaging (Bellingham); 2020 Sep; 7(5):054503. PubMed ID: 33102621
    [No Abstract]   [Full Text] [Related]  

  • 2. SAP-cGAN: Adversarial learning for breast mass segmentation in digital mammogram based on superpixel average pooling.
    Li Y; Zhao G; Zhang Q; Lin Y; Wang M
    Med Phys; 2021 Mar; 48(3):1157-1167. PubMed ID: 33340125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TrEnD: A transformer-based encoder-decoder model with adaptive patch embedding for mass segmentation in mammograms.
    Liu D; Wu B; Li C; Sun Z; Zhang N
    Med Phys; 2023 May; 50(5):2884-2899. PubMed ID: 36609788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Connected-UNets: a deep learning architecture for breast mass segmentation.
    Baccouche A; Garcia-Zapirain B; Castillo Olea C; Elmaghraby AS
    NPJ Breast Cancer; 2021 Dec; 7(1):151. PubMed ID: 34857755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convolutional neural network for automated mass segmentation in mammography.
    Abdelhafiz D; Bi J; Ammar R; Yang C; Nabavi S
    BMC Bioinformatics; 2020 Dec; 21(Suppl 1):192. PubMed ID: 33297952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses.
    Tsochatzidis L; Koutla P; Costaridou L; Pratikakis I
    Comput Methods Programs Biomed; 2021 Mar; 200():105913. PubMed ID: 33422854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiscale unsupervised domain adaptation for automatic pancreas segmentation in CT volumes using adversarial learning.
    Zhu Y; Hu P; Li X; Tian Y; Bai X; Liang T; Li J
    Med Phys; 2022 Sep; 49(9):5799-5818. PubMed ID: 35833617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms.
    Sun H; Li C; Liu B; Liu Z; Wang M; Zheng H; Dagan Feng D; Wang S
    Phys Med Biol; 2020 Feb; 65(5):055005. PubMed ID: 31722327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass segmentation for whole mammograms via attentive multi-task learning framework.
    Hou X; Bai Y; Xie Y; Li Y
    Phys Med Biol; 2021 May; 66(10):. PubMed ID: 33882475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DCANet: Dual contextual affinity network for mass segmentation in whole mammograms.
    Lou M; Qi Y; Meng J; Xu C; Wang Y; Pi J; Ma Y
    Med Phys; 2021 Aug; 48(8):4291-4303. PubMed ID: 34061371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generating Full-Field Digital Mammogram From Digitized Screen-Film Mammogram for Breast Cancer Screening With High-Resolution Generative Adversarial Network.
    Zhou Y; Wei J; Wu D; Zhang Y
    Front Oncol; 2022; 12():868257. PubMed ID: 35574397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
    Su Y; Liu Q; Xie W; Hu P
    Comput Methods Programs Biomed; 2022 Jun; 221():106903. PubMed ID: 35636358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning from adversarial medical images for X-ray breast mass segmentation.
    Shen T; Gou C; Wang FY; He Z; Chen W
    Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Road crack segmentation using an attention residual U-Net with generative adversarial learning.
    Hu X; Yao M; Zhang D
    Math Biosci Eng; 2021 Nov; 18(6):9669-9684. PubMed ID: 34814362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonic breast tumor extraction based on adversarial mechanism and active contour.
    Wang J; Chen G; Chen S; Joseph Raj AN; Zhuang Z; Xie L; Ma S
    Comput Methods Programs Biomed; 2022 Oct; 225():107052. PubMed ID: 35985149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic Meniscus Segmentation Using Adversarial Learning-Based Segmentation Network with Object-Aware Map in Knee MR Images.
    Jeon U; Kim H; Hong H; Wang J
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34573953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cGAN-based tumor segmentation method for breast ultrasound images.
    You G; Qin Y; Zhao C; Zhao Y; Zhu K; Yang X; Li YL
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37276866
    [No Abstract]   [Full Text] [Related]  

  • 19. Multi-Level Swin Transformer Enabled Automatic Segmentation and Classification of Breast Metastases.
    Masood A; Naseem U; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FS-UNet: Mass segmentation in mammograms using an encoder-decoder architecture with feature strengthening.
    Pi J; Qi Y; Lou M; Li X; Wang Y; Xu C; Ma Y
    Comput Biol Med; 2021 Oct; 137():104800. PubMed ID: 34507155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.