BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33102912)

  • 1. Formation of cell spheroids using Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Kasetsirikul S; Zhou Y
    Int J Bioprint; 2018; 4(1):130. PubMed ID: 33102912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scaffold-free bioprinting of mesenchymal stem cells using the Regenova printer: Spheroid characterization and osteogenic differentiation.
    Aguilar IN; Olivos DJ; Brinker A; Alvarez MB; Smith LJ; Chu TG; Kacena MA; Wagner DR
    Bioprinting; 2019 Sep; 15():. PubMed ID: 31457109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Accumulation in a Microchannel and Its Reduction by a Standing Surface Acoustic Wave (SSAW).
    Sriphutkiat Y; Zhou Y
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28067852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput fabrication of cell spheroids with 3D acoustic assembly devices.
    Miao T; Chen K; Wei X; Huang B; Qian Y; Wang L; Xu M
    Int J Bioprint; 2023; 9(4):733. PubMed ID: 37323490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells.
    Ahmad T; Shin HJ; Lee J; Shin YM; Perikamana SKM; Park SY; Jung HS; Shin H
    Acta Biomater; 2018 Jul; 74():464-477. PubMed ID: 29803004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subaqueous 3D stem cell spheroid levitation culture using anti-gravity bioreactor based on sound wave superposition.
    Park JH; Lee JR; Park S; Kim YJ; Yoon JK; Park HS; Hyun J; Joung YK; Lee TI; Bhang SH
    Biomater Res; 2023 May; 27(1):51. PubMed ID: 37208764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid formation of size-controllable multicellular spheroids via 3D acoustic tweezers.
    Chen K; Wu M; Guo F; Li P; Chan CY; Mao Z; Li S; Ren L; Zhang R; Huang TJ
    Lab Chip; 2016 Jul; 16(14):2636-43. PubMed ID: 27327102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Standing Surface Acoustic Wave (SSAW)-Based Fluorescence-Activated Cell Sorter.
    Ren L; Yang S; Zhang P; Qu Z; Mao Z; Huang PH; Chen Y; Wu M; Wang L; Li P; Huang TJ
    Small; 2018 Oct; 14(40):e1801996. PubMed ID: 30168662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic assembly of cell spheroids in disposable capillaries.
    Wu Y; Ao Z; Bin Chen ; Muhsen M; Bondesson M; Lu X; Guo F
    Nanotechnology; 2018 Dec; 29(50):504006. PubMed ID: 30264735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous enrichment of low-abundance cell samples using standing surface acoustic waves (SSAW).
    Chen Y; Li S; Gu Y; Li P; Ding X; Wang L; McCoy JP; Levine SJ; Huang TJ
    Lab Chip; 2014 Mar; 14(5):924-30. PubMed ID: 24413889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogels with an embossed surface: An all-in-one platform for mass production and culture of human adipose-derived stem cell spheroids.
    Kim SJ; Park J; Byun H; Park YW; Major LG; Lee DY; Choi YS; Shin H
    Biomaterials; 2019 Jan; 188():198-212. PubMed ID: 30368228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bioink: A comprehensive review on bioprintable materials.
    Hospodiuk M; Dey M; Sosnoski D; Ozbolat IT
    Biotechnol Adv; 2017; 35(2):217-239. PubMed ID: 28057483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Bioprinted Liver-on-a-Chip for Drug Cytotoxicity Screening.
    Huh J; Parra JPRLL; Copus JS; Kang HW; Bishop CE; Soker S; Murphy S; Shupe TD; Yoo JJ; Lee SJ; Atala A
    Tissue Eng Part A; 2024 Jan; ():. PubMed ID: 38126301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of Adipose Stromal Vascular Fraction Cell-Laden Spheroids Using a Three-Dimensional Bioprinter and Superhydrophobic Surfaces.
    Gettler BC; Zakhari JS; Gandhi PS; Williams SK
    Tissue Eng Part C Methods; 2017 Sep; 23(9):516-524. PubMed ID: 28665236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions.
    Glicklis R; Merchuk JC; Cohen S
    Biotechnol Bioeng; 2004 Jun; 86(6):672-80. PubMed ID: 15137079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
    Heo DN; Hospodiuk M; Ozbolat IT
    Acta Biomater; 2019 Sep; 95():348-356. PubMed ID: 30831326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell alignment and accumulation using acoustic nozzle for bioprinting.
    Sriphutkiat Y; Kasetsirikul S; Ketpun D; Zhou Y
    Sci Rep; 2019 Nov; 9(1):17774. PubMed ID: 31780803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable fabrication of renal spheroids and nephron-like tubules by bioprinting and controlled self-assembly of epithelial cells.
    Tröndle K; Rizzo L; Pichler R; Koch F; Itani A; Zengerle R; Lienkamp SS; Koltay P; Zimmermann S
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33513594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D bioprinting of liver spheroids derived from human induced pluripotent stem cells sustain liver function and viability in vitro.
    Goulart E; de Caires-Junior LC; Telles-Silva KA; Araujo BHS; Rocco SA; Sforca M; de Sousa IL; Kobayashi GS; Musso CM; Assoni AF; Oliveira D; Caldini E; Raia S; Lelkes PI; Zatz M
    Biofabrication; 2019 Nov; 12(1):015010. PubMed ID: 31577996
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.