These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33103117)

  • 1. Electrodes with Electrodeposited Water-excluding Polymer Coating Enable High-Voltage Aqueous Supercapacitors.
    Dong W; Lin T; Huang J; Wang Y; Zhang Z; Wang X; Yuan X; Lin J; Chen IW; Huang F
    Research (Wash D C); 2020; 2020():4178179. PubMed ID: 33103117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-Driven Route for Widening Voltage Window in Asymmetric Supercapacitor.
    Sahoo R; Pham DT; Lee TH; Luu THT; Seok J; Lee YH
    ACS Nano; 2018 Aug; 12(8):8494-8505. PubMed ID: 30044606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell voltage versus electrode potential range in aqueous supercapacitors.
    Dai Z; Peng C; Chae JH; Ng KC; Chen GZ
    Sci Rep; 2015 Apr; 5():9854. PubMed ID: 25897670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage.
    Lin T; Chen IW; Liu F; Yang C; Bi H; Xu F; Huang F
    Science; 2015 Dec; 350(6267):1508-13. PubMed ID: 26680194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting the Energy Density of Carbon-Based Aqueous Supercapacitors by Optimizing the Surface Charge.
    Yu M; Lin D; Feng H; Zeng Y; Tong Y; Lu X
    Angew Chem Int Ed Engl; 2017 May; 56(20):5454-5459. PubMed ID: 28345296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density.
    Zhao L; Qiu Y; Yu J; Deng X; Dai C; Bai X
    Nanoscale; 2013 Jun; 5(11):4902-9. PubMed ID: 23624805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Aqueous Conducting Redox-Polymer-Based Proton Battery that Can Withstand Rapid Constant-Voltage Charging and Sub-Zero Temperatures.
    Strietzel C; Sterby M; Huang H; Strømme M; Emanuelsson R; Sjödin M
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9631-9638. PubMed ID: 32180324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspectives on Working Voltage of Aqueous Supercapacitors.
    Guo T; Zhou D; Pang L; Sun S; Zhou T; Su J
    Small; 2022 Apr; 18(16):e2106360. PubMed ID: 35064755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An "Ether-In-Water" Electrolyte Boosts Stable Interfacial Chemistry for Aqueous Lithium-Ion Batteries.
    Shang Y; Chen N; Li Y; Chen S; Lai J; Huang Y; Qu W; Wu F; Chen R
    Adv Mater; 2020 Oct; 32(40):e2004017. PubMed ID: 32876955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmentally-friendly aqueous Li (or Na)-ion battery with fast electrode kinetics and super-long life.
    Dong X; Chen L; Liu J; Haller S; Wang Y; Xia Y
    Sci Adv; 2016 Jan; 2(1):e1501038. PubMed ID: 26844298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NH3 assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors.
    Huang H; Luo G; Xu L; Lei C; Tang Y; Tang S; Du Y
    Nanoscale; 2015 Feb; 7(5):2060-8. PubMed ID: 25553955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.
    Suo L; Borodin O; Sun W; Fan X; Yang C; Wang F; Gao T; Ma Z; Schroeder M; von Cresce A; Russell SM; Armand M; Angell A; Xu K; Wang C
    Angew Chem Int Ed Engl; 2016 Jun; 55(25):7136-41. PubMed ID: 27120336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Soluble Sericin Protein Enabling Stable Solid-Electrolyte Interphase for Fast Charging High Voltage Battery Electrode.
    Tang Y; Deng J; Li W; Malyi OI; Zhang Y; Zhou X; Pan S; Wei J; Cai Y; Chen Z; Chen X
    Adv Mater; 2017 Sep; 29(33):. PubMed ID: 28671719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen-Doped Multi-Scale Porous Carbon for High Voltage Aqueous Supercapacitors.
    Liu X; Mi R; Yuan L; Yang F; Fu Z; Wang C; Tang Y
    Front Chem; 2018; 6():475. PubMed ID: 30386768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous electrochemistry of poly(vinylanthraquinone) for anode-active materials in high-density and rechargeable polymer/air batteries.
    Choi W; Harada D; Oyaizu K; Nishide H
    J Am Chem Soc; 2011 Dec; 133(49):19839-43. PubMed ID: 22011047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.
    Ma Y; Ma J; Chai J; Liu Z; Ding G; Xu G; Liu H; Chen B; Zhou X; Cui G; Chen L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41462-41472. PubMed ID: 29112381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.