BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33103335)

  • 1. A novel robotic system for flexible ureteroscopy.
    Shu X; Chen Q; Xie L
    Int J Med Robot; 2021 Feb; 17(1):1-11. PubMed ID: 33103335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety enhanced surgical robot for flexible ureteroscopy based on force feedback.
    Shu X; Hua P; Wang S; Zhang L; Xie L
    Int J Med Robot; 2022 Oct; 18(5):e2410. PubMed ID: 35439845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic system for solo surgery in flexible ureteroscopy: development and evaluation with clinical users.
    Schlenk C; Hagmann K; Steidle F; Oliva Maza L; Kolb A; Hellings-Kuß A; Schöb DS; Klodmann J; Miernik A; Albu-Schäffer A
    Int J Comput Assist Radiol Surg; 2023 Sep; 18(9):1559-1569. PubMed ID: 37032384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted flexible ureteroscopy: an update.
    Rassweiler J; Fiedler M; Charalampogiannis N; Kabakci AS; Saglam R; Klein JT
    Urolithiasis; 2018 Feb; 46(1):69-77. PubMed ID: 29170856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic Flexible Ureteroscopy Versus Classic Flexible Ureteroscopy in Renal Stones: the Initial Romanian Experience.
    Geavlete P; Saglam R; Georgescu D; Mulţescu R; Iordache V; Kabakci AS; Ene C; Geavlete B;
    Chirurgia (Bucur); 2016; 111(4):326-9. PubMed ID: 27604670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new robot for flexible ureteroscopy: development and early clinical results (IDEAL stage 1-2b).
    Saglam R; Muslumanoglu AY; Tokatlı Z; Caşkurlu T; Sarica K; Taşçi Aİ; Erkurt B; Süer E; Kabakci AS; Preminger G; Traxer O; Rassweiler JJ
    Eur Urol; 2014 Dec; 66(6):1092-100. PubMed ID: 25059998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape estimation of the anterior part of a flexible ureteroscope for intraoperative navigation.
    Zhang C; Hu C; He Z; Fu Z; Xu L; Ding G; Wang P; Zhang H; Ye X
    Int J Comput Assist Radiol Surg; 2022 Oct; 17(10):1787-1799. PubMed ID: 35843963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Robotic Colonoscopic Manipulation System, Using Haptic Feedback Algorithm.
    Woo J; Choi JH; Seo JT; Kim TI; Yi BJ
    Yonsei Med J; 2017 Jan; 58(1):139-143. PubMed ID: 27873506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research of the master-slave robot surgical system with the function of force feedback.
    Shi Y; Zhou C; Xie L; Chen Y; Jiang J; Zhang Z; Deng Z
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28513095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Novel Master-Slave Interventional Surgery Robot with Force Feedback and Collaborative Operation.
    Song Y; Li L; Tian Y; Li Z; Yin X
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on real-time force feedback for a master-slave interventional surgical robotic system.
    Guo S; Wang Y; Xiao N; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):37. PubMed ID: 29654553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and evaluation of vascular interventional robot system for complex coronary artery lesions.
    Yu H; Wang H; Chang J; Liu W; Wang F; Niu J
    Med Biol Eng Comput; 2023 Jun; 61(6):1365-1380. PubMed ID: 36705768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible ureteroscope capable of acute-angled and balanced omnidirectional bending based on soft and flexible porous tube and crossed control wiring.
    Yamada A; Tani T
    Med Biol Eng Comput; 2023 Mar; 61(3):799-809. PubMed ID: 36607505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of multi-section continuum robotic ureteroscope in the kidney.
    Kobayashi S; Masaki F; King F; Wollin DA; Kibel AS; Hata N
    J Robot Surg; 2023 Aug; 17(4):1411-1420. PubMed ID: 36689076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel SEA-based haptic force feedback master hand controller for robotic endovascular intervention system.
    Wang K; Mai X; Xu H; Lu Q; Yan W
    Int J Med Robot; 2020 Oct; 16(5):1-10. PubMed ID: 32306455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a new haptic device and experiments in minimally invasive surgical robot.
    Wang T; Pan B; Fu Y; Wang S; Ai Y
    Comput Assist Surg (Abingdon); 2017 Dec; 22(sup1):240-250. PubMed ID: 29072504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Innovations in surgical stone disease.
    Antonelli JA
    Curr Opin Urol; 2016 May; 26(3):240-7. PubMed ID: 26967264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible ureteroscopy: reuse? Or is single use the new direction?
    Ventimiglia E; Somani BK; Traxer O
    Curr Opin Urol; 2020 Mar; 30(2):113-119. PubMed ID: 31815748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.