BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 33103435)

  • 21. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine.
    Tai W; He L; Zhang X; Pu J; Voronin D; Jiang S; Zhou Y; Du L
    Cell Mol Immunol; 2020 Jun; 17(6):613-620. PubMed ID: 32203189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists.
    Yuen CK; Lam JY; Wong WM; Mak LF; Wang X; Chu H; Cai JP; Jin DY; To KK; Chan JF; Yuen KY; Kok KH
    Emerg Microbes Infect; 2020 Dec; 9(1):1418-1428. PubMed ID: 32529952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. IL6-mediated HCoV-host interactome regulatory network and GO/Pathway enrichment analysis.
    Politano G; Benso A
    PLoS Comput Biol; 2020 Sep; 16(9):e1008238. PubMed ID: 32997660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Alignment of virus-host protein-protein interaction networks by integer linear programming: SARS-CoV-2.
    Llabrés M; Valiente G
    PLoS One; 2020; 15(12):e0236304. PubMed ID: 33284827
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of Drug Candidates with Various SARS-CoV-2 Receptors: An in Silico Study to Combat COVID-19.
    Barros RO; Junior FLCC; Pereira WS; Oliveira NMN; Ramos RM
    J Proteome Res; 2020 Nov; 19(11):4567-4575. PubMed ID: 32786890
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SARS-CoV-2 Evolutionary Adaptation toward Host Entry and Recognition of Receptor O-Acetyl Sialylation in Virus-Host Interaction.
    Kim CH
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SARS-CoV-2 entry in host cells-multiple targets for treatment and prevention.
    Mahmoud IS; Jarrar YB; Alshaer W; Ismail S
    Biochimie; 2020 Aug; 175():93-98. PubMed ID: 32479856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the Rigidity of SARS-CoV-2 Spike Receptor-Binding Motif the Hallmark for Its Enhanced Infectivity? Insights from All-Atom Simulations.
    Spinello A; Saltalamacchia A; Magistrato A
    J Phys Chem Lett; 2020 Jun; 11(12):4785-4790. PubMed ID: 32463239
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular Simulations and Network Modeling Reveal an Allosteric Signaling in the SARS-CoV-2 Spike Proteins.
    Verkhivker GM
    J Proteome Res; 2020 Nov; 19(11):4587-4608. PubMed ID: 33006900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sars-Cov-2 interference in HEME production: is it the time for an early predictive biomarker?
    Comentale G; Manzo R; Pilato E
    J Mol Med (Berl); 2020 Aug; 98(8):1053-1054. PubMed ID: 32601795
    [No Abstract]   [Full Text] [Related]  

  • 31. Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms.
    Ali A; Vijayan R
    Sci Rep; 2020 Aug; 10(1):14214. PubMed ID: 32848162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hot spot profiles of SARS-CoV-2 and human ACE2 receptor protein protein interaction obtained by density functional tight binding fragment molecular orbital method.
    Lim H; Baek A; Kim J; Kim MS; Liu J; Nam KY; Yoon J; No KT
    Sci Rep; 2020 Oct; 10(1):16862. PubMed ID: 33033344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunoinformatics-guided designing of epitope-based subunit vaccines against the SARS Coronavirus-2 (SARS-CoV-2).
    Sarkar B; Ullah MA; Johora FT; Taniya MA; Araf Y
    Immunobiology; 2020 May; 225(3):151955. PubMed ID: 32517882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neurological manifestations of COVID-19: available evidences and a new paradigm.
    Khatoon F; Prasad K; Kumar V
    J Neurovirol; 2020 Oct; 26(5):619-630. PubMed ID: 32839951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The analysis on the human protein domain targets and host-like interacting motifs for the MERS-CoV and SARS-CoV/CoV-2 infers the molecular mimicry of coronavirus.
    Martínez YA; Guo X; Portales-Pérez DP; Rivera G; Castañeda-Delgado JE; García-Pérez CA; Enciso-Moreno JA; Lara-Ramírez EE
    PLoS One; 2021; 16(2):e0246901. PubMed ID: 33596252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutations in the phosphorylation sites of SARS-CoV-2 encoded nucleocapsid protein and structure model of sequestration by protein 14-3-3.
    Tung HYL; Limtung P
    Biochem Biophys Res Commun; 2020 Oct; 532(1):134-138. PubMed ID: 32829876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A data-driven hypothesis on the epigenetic dysregulation of host metabolism by SARS coronaviral infection: Potential implications for the SARS-CoV-2 modus operandi.
    Vavougios GD
    Med Hypotheses; 2020 Jul; 140():109759. PubMed ID: 32344305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Insights into the Binding Modes of Viral RNA-Dependent RNA Polymerases Using a Function-Site Interaction Fingerprint Method for RNA Virus Drug Discovery.
    Zhao Z; Bourne PE
    J Proteome Res; 2020 Nov; 19(11):4698-4705. PubMed ID: 32946692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lung transcriptome of a COVID-19 patient and systems biology predictions suggest impaired surfactant production which may be druggable by surfactant therapy.
    Islam ABMMK; Khan MA
    Sci Rep; 2020 Nov; 10(1):19395. PubMed ID: 33173052
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor.
    Souza PFN; Lopes FES; Amaral JL; Freitas CDT; Oliveira JTA
    Int J Biol Macromol; 2020 Dec; 164():66-76. PubMed ID: 32693122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.