BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33103679)

  • 1. Surface polaron states on single-crystal rutile TiO
    Yang Q; Zhu H; Hou Y; Liu D; Tang H; Liu D; Zhang W; Yan S; Zou Z
    Dalton Trans; 2020 Nov; 49(42):15054-15060. PubMed ID: 33103679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Situ Determination of Polaron-Mediated Ultrafast Electron Trapping in Rutile TiO
    Zhu H; Xiao S; Tu W; Yan S; He T; Zhu X; Yao Y; Zhou Y; Zou Z
    J Phys Chem Lett; 2021 Nov; 12(44):10815-10822. PubMed ID: 34726410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting.
    Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L
    Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoetching TiO
    Liu C; Zuo J; Su X; Guo H; Pei Y; Zhang J; Chen S
    Nanoscale; 2022 Nov; 14(42):15918-15927. PubMed ID: 36268828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorine and tin co-doping synergistically improves the photoelectrochemical water oxidation performance of TiO
    Wu T; Chen C; Wei Y; Lu R; Wang L; Jiang X
    Dalton Trans; 2019 Aug; 48(32):12096-12104. PubMed ID: 31321391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface.
    Zhu H; Yang Q; Liu D; Liu D; Zhang W; Chu Z; Wang X; Yan S; Li Z; Zou Z
    J Phys Chem Lett; 2020 Nov; 11(21):9184-9194. PubMed ID: 33058679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Photoelectrochemical Performance from Rationally Designed Anatase/Rutile TiO2 Heterostructures.
    Cao F; Xiong J; Wu F; Liu Q; Shi Z; Yu Y; Wang X; Li L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12239-45. PubMed ID: 27136708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.
    Wang J; Feng B; Su J; Guo L
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23143-50. PubMed ID: 27508404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved photoelectrochemical water oxidation kinetics using a TiO2 nanorod array photoanode decorated with graphene oxide in a neutral pH solution.
    Chae SY; Sudhagar P; Fujishima A; Hwang YJ; Joo OS
    Phys Chem Chem Phys; 2015 Mar; 17(12):7714-9. PubMed ID: 25711207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Lupinus-like TiO
    Zhu L; Lu H; Hao D; Wang L; Wu Z; Wang L; Li P; Ye J
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38537-38544. PubMed ID: 29047272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled charge-dynamics in cobalt-doped TiO
    Liu C; Wang F; Zhu S; Xu Y; Liang Q; Chen Z
    J Colloid Interface Sci; 2018 Nov; 530():403-411. PubMed ID: 29982032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting.
    Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balsam-pear-like rutile/anatase core/shell titania nanorod arrays for photoelectrochemical water splitting.
    Wen W; Yao JC; Gu YJ; Sun TL; Tian H; Zhou QL; Wu JM
    Nanotechnology; 2017 Nov; 28(46):465602. PubMed ID: 29053476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the anatase-rutile phase junction in charge separation and transfer in a TiO
    Li A; Wang Z; Yin H; Wang S; Yan P; Huang B; Wang X; Li R; Zong X; Han H; Li C
    Chem Sci; 2016 Sep; 7(9):6076-6082. PubMed ID: 30034748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchically branched Fe2O3@TiO2 nanorod arrays for photoelectrochemical water splitting: facile synthesis and enhanced photoelectrochemical performance.
    Li Y; Wei X; Zhu B; Wang H; Tang Y; Sum TC; Chen X
    Nanoscale; 2016 Jun; 8(21):11284-90. PubMed ID: 27189633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO
    Li CH; Hsu CW; Lu SY
    J Colloid Interface Sci; 2018 Jul; 521():216-225. PubMed ID: 29571103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO
    Chen YL; Chen YH; Chen JW; Cao F; Li L; Luo ZM; Leu IC; Pu YC
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8126-8137. PubMed ID: 30726054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing Fe2O3/TiO2 core-shell photoelectrodes for efficient photoelectrochemical water splitting.
    Wang M; Pyeon M; Gönüllü Y; Kaouk A; Shen S; Guo L; Mathur S
    Nanoscale; 2015 Jun; 7(22):10094-100. PubMed ID: 25980730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.