BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33103893)

  • 1. High-Throughput Exploration of Metal Vanadate Thin-Film Systems (M-V-O, M = Cu, Ag, W, Cr, Co, Fe) for Solar Water Splitting: Composition, Structure, Stability, and Photoelectrochemical Properties.
    Kumari S; Junqueira JRC; Schuhmann W; Ludwig A
    ACS Comb Sci; 2020 Dec; 22(12):844-857. PubMed ID: 33103893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combinatorial Synthesis and High-Throughput Characterization of Fe-V-O Thin-Film Materials Libraries for Solar Water Splitting.
    Kumari S; Gutkowski R; Junqueira JRC; Kostka A; Hengge K; Scheu C; Schuhmann W; Ludwig A
    ACS Comb Sci; 2018 Sep; 20(9):544-553. PubMed ID: 30102852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and photoelectrochemical properties in the thin film system Cu-Fe-V-O and its ternary subsystems Fe-V-O and Cu-V-O.
    Kumari S; Junqueira JRC; Sarker S; Mehta A; Schuhmann W; Ludwig A
    J Chem Phys; 2020 Jul; 153(1):014707. PubMed ID: 32640827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput screening of thin-film semiconductor material libraries II: characterization of Fe-W-O libraries.
    Meyer R; Sliozberg K; Khare C; Schuhmann W; Ludwig A
    ChemSusChem; 2015 Apr; 8(7):1279-85. PubMed ID: 25727483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.
    Sliozberg K; Stein HS; Khare C; Parkinson BA; Ludwig A; Schuhmann W
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4883-9. PubMed ID: 25650842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial Screening of Cu-W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting.
    Baues S; Vocke H; Harms L; Rücker KK; Wark M; Wittstock G
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):6590-6603. PubMed ID: 35076196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial synthesis and high-throughput characterization of structural and photoelectrochemical properties of Fe:WO
    Khare C; Sliozberg K; Stepanovich A; Schuhmann W; Ludwig A
    Nanotechnology; 2017 May; 28(18):185604. PubMed ID: 28398904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combinatorial Investigations of High Temperature CuNb Oxide Phases for Photoelectrochemical Water Splitting.
    Skorupska K; Maggard PA; Eichberger R; Schwarzburg K; Shahbazi P; Zoellner B; Parkinson BA
    ACS Comb Sci; 2015 Dec; 17(12):742-51. PubMed ID: 26505910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Screening Solar-Thermal Conversion Films in a Pseudobinary (Cr, Fe, V)-(Ta, W) System.
    Xing Q; Ma J; Wang C; Zhang Y
    ACS Comb Sci; 2018 Nov; 20(11):602-610. PubMed ID: 30350567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution.
    Trotochaud L; Ranney JK; Williams KN; Boettcher SW
    J Am Chem Soc; 2012 Oct; 134(41):17253-61. PubMed ID: 22991896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Layer Deposition of Bismuth Vanadates for Solar Energy Materials.
    Stefik M
    ChemSusChem; 2016 Jul; 9(13):1727-35. PubMed ID: 27246652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting.
    Wang G; Wang H; Ling Y; Tang Y; Yang X; Fitzmorris RC; Wang C; Zhang JZ; Li Y
    Nano Lett; 2011 Jul; 11(7):3026-33. PubMed ID: 21710974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect-Cluster-Boosted Solar Photoelectrochemical Water Splitting by n-Cu
    Chen YC; Chen YJ; Popescu R; Dong PH; Gerthsen D; Hsu YK
    ChemSusChem; 2019 Nov; 12(21):4859-4865. PubMed ID: 31469495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combinatorial electrochemical synthesis and characterization of tungsten-based mixed-metal oxides.
    Baeck SH; Jaramillo TF; Brändli C; McFarland EW
    J Comb Chem; 2002; 4(6):563-8. PubMed ID: 12425600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput exploration of activity and stability for identifying photoelectrochemical water splitting materials.
    Jenewein KJ; Thienhaus S; Kormányos A; Ludwig A; Cherevko S
    Chem Sci; 2022 Nov; 13(46):13774-13781. PubMed ID: 36544729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-Processed Synthesis of Copper Oxide (Cu
    Aktar A; Ahmmed S; Hossain J; Ismail ABM
    ACS Omega; 2020 Oct; 5(39):25125-25134. PubMed ID: 33043191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of 24 ternary thin film materials libraries on a single substrate in one experiment for irreversible high-throughput studies.
    Buenconsejo PJ; Siegel A; Savan A; Thienhaus S; Ludwig A
    ACS Comb Sci; 2012 Jan; 14(1):25-30. PubMed ID: 22126321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Heterogeneities and Composition-Reactivity Relationships in Copper Vanadate Photoanodes.
    Eichhorn J; Jiang CM; Cooper JK; Sharp ID; Toma FM
    ACS Appl Mater Interfaces; 2021 May; 13(20):23575-23583. PubMed ID: 33998233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.