BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33103962)

  • 21. Identification and functional analysis of the NLP-encoding genes from the phytopathogenic oomycete Phytophthora capsici.
    Chen XR; Huang SX; Zhang Y; Sheng GL; Li YP; Zhu F
    Mol Genet Genomics; 2018 Aug; 293(4):931-943. PubMed ID: 29572661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization and functional analysis of the Nep1-like protein-encoding gene from Phytophthora capsici.
    Feng BZ; Li PQ
    Genet Mol Res; 2013 Apr; 12(2):1468-78. PubMed ID: 23661469
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling.
    Ai G; Xia Q; Song T; Li T; Zhu H; Peng H; Liu J; Fu X; Zhang M; Jing M; Xia A; Dou D
    PLoS Pathog; 2021 Mar; 17(3):e1009388. PubMed ID: 33711077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana.
    Xiong Q; Ye W; Choi D; Wong J; Qiao Y; Tao K; Wang Y; Ma W
    Mol Plant Microbe Interact; 2014 Dec; 27(12):1379-89. PubMed ID: 25387135
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection.
    Lu S; Chen L; Tao K; Sun N; Wu Y; Lu X; Wang Y; Dou D
    Mol Plant; 2013 Sep; 6(5):1592-604. PubMed ID: 23475996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana.
    Bos JI; Kanneganti TD; Young C; Cakir C; Huitema E; Win J; Armstrong MR; Birch PR; Kamoun S
    Plant J; 2006 Oct; 48(2):165-76. PubMed ID: 16965554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance.
    Chen XR; Li YP; Li QY; Xing YP; Liu BB; Tong YH; Xu JY
    Mol Plant Pathol; 2016 May; 17(4):577-87. PubMed ID: 26307454
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Seo YE; Yan X; Choi D; Mang H
    Mol Plant Microbe Interact; 2023 Mar; 36(3):150-158. PubMed ID: 36413345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetic analysis of environmental strains of the plant pathogen Phytophthora capsici reveals heterogeneous repertoire of effectors and possible effector evolution via genomic island.
    Iribarren MJ; Pascuan C; Soto G; Ayub ND
    FEMS Microbiol Lett; 2015 Nov; 362(22):. PubMed ID: 26443834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity.
    Wang W; Jiao F
    Planta; 2019 Aug; 250(2):413-425. PubMed ID: 31243548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel EIicitin from
    Yang K; Wang Y; Zhao H; Shen D; Dou D; Jing M
    J Agric Food Chem; 2022 Dec; 70(51):16135-16145. PubMed ID: 36528808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EffectorO: Motif-Independent Prediction of Effectors in Oomycete Genomes Using Machine Learning and Lineage Specificity.
    Nur M; Wood K; Michelmore R
    Mol Plant Microbe Interact; 2023 Jul; 36(7):397-410. PubMed ID: 36853198
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An RXLR effector PlAvh142 from Peronophythora litchii triggers plant cell death and contributes to virulence.
    Situ J; Jiang L; Fan X; Yang W; Li W; Xi P; Deng Y; Kong G; Jiang Z
    Mol Plant Pathol; 2020 Mar; 21(3):415-428. PubMed ID: 31912634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Phytophthora capsici RXLR Effector Targets and Inhibits a Plant PPIase to Suppress Endoplasmic Reticulum-Mediated Immunity.
    Fan G; Yang Y; Li T; Lu W; Du Y; Qiang X; Wen Q; Shan W
    Mol Plant; 2018 Aug; 11(8):1067-1083. PubMed ID: 29864524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional analysis of pcpme6 from oomycete plant pathogen Phytophthora capsici.
    Feng B; Li P; Wang H; Zhang X
    Microb Pathog; 2010; 49(1-2):23-31. PubMed ID: 20227480
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Yang Z; Ai G; Lu X; Li Y; Miao J; Song W; Xu H; Liu J; Shen D; Dou D
    Mol Plant Microbe Interact; 2024 Jan; 37(1):15-24. PubMed ID: 37856777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters.
    Song T; Ma Z; Shen D; Li Q; Li W; Su L; Ye T; Zhang M; Wang Y; Dou D
    PLoS Pathog; 2015 Dec; 11(12):e1005348. PubMed ID: 26714171
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A jacalin-like lectin domain-containing protein of Sclerospora graminicola acts as an apoplastic virulence effector in plant-oomycete interactions.
    Kobayashi M; Utsushi H; Fujisaki K; Takeda T; Yamashita T; Terauchi R
    Mol Plant Pathol; 2022 Jun; 23(6):845-854. PubMed ID: 35257477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A paralogous decoy protects
    Ma Z; Zhu L; Song T; Wang Y; Zhang Q; Xia Y; Qiu M; Lin Y; Li H; Kong L; Fang Y; Ye W; Wang Y; Dong S; Zheng X; Tyler BM; Wang Y
    Science; 2017 Feb; 355(6326):710-714. PubMed ID: 28082413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mining oomycete proteomes for metalloproteases leads to identification of candidate virulence factors in Phytophthora infestans.
    Schoina C; Rodenburg SYA; Meijer HJG; Seidl MF; Lacambra LT; Bouwmeester K; Govers F
    Mol Plant Pathol; 2021 May; 22(5):551-563. PubMed ID: 33657266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.