These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 33104551)
1. Diurnal temperature variations in the lower troposphere as measured by an all-day-operational pure rotational Raman lidar. Pan X; Yi F; Liu F; Zhang Y; Yan Y Appl Opt; 2020 Oct; 59(28):8688-8696. PubMed ID: 33104551 [TBL] [Abstract][Full Text] [Related]
2. Atmospheric temperature measurements at altitudes of 5-30 km with a double-grating-based pure rotational Raman lidar. Jia J; Yi F Appl Opt; 2014 Aug; 53(24):5330-43. PubMed ID: 25321103 [TBL] [Abstract][Full Text] [Related]
3. Pure rotational Raman lidar for full-day troposphere temperature measurement at Zhongshan Station (69.37°S, 76.37°E), Antarctica. Liu F; Wang R; Yi F; Huang W; Ban C; Pan W; Wang Z; Hu H Opt Express; 2021 Mar; 29(7):10059-10076. PubMed ID: 33820141 [TBL] [Abstract][Full Text] [Related]
4. Temperature Tides Across the Mid-Latitude Summer Turbopause Measured by a Sodium Lidar and MIGHTI/ICON. Yuan T; Stevens MH; Englert CR; Immel TJ J Geophys Res Atmos; 2021 Aug; 126(16):. PubMed ID: 34777927 [TBL] [Abstract][Full Text] [Related]
5. RAMSES: German Meteorological Service autonomous Raman lidar for water vapor, temperature, aerosol, and cloud measurements. Reichardt J; Wandinger U; Klein V; Mattis I; Hilber B; Begbie R Appl Opt; 2012 Dec; 51(34):8111-31. PubMed ID: 23207381 [TBL] [Abstract][Full Text] [Related]
6. Fabry-Perot etalon-based ultraviolet trifrequency high-spectral-resolution lidar for wind, temperature, and aerosol measurements from 0.2 to 35 km altitude. Shen F; Xie C; Qiu C; Wang B Appl Opt; 2018 Nov; 57(31):9328-9340. PubMed ID: 30461973 [TBL] [Abstract][Full Text] [Related]
7. Doppler lidar atmospheric wind sensor: reevaluation of a 355-nm incoherent Doppler lidar. Rees D; McDermid IS Appl Opt; 1990 Oct; 29(28):4133-44. PubMed ID: 20577356 [TBL] [Abstract][Full Text] [Related]
8. Diurnal variation of the potassium layer in the upper atmosphere. Feng W; Höffner J; Marsh DR; Chipperfield MP; Dawkins EC; Viehl TP; Plane JM Geophys Res Lett; 2015 May; 42(9):3619-3626. PubMed ID: 27478284 [TBL] [Abstract][Full Text] [Related]
9. [Raman Lidar measuring tropospheric temperature profiles with many rotational Raman lines]. Su J; Zhang YC; Hu SX; Cao KF; Zhao PT; Wang SL; Xie J Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1781-5. PubMed ID: 18975802 [TBL] [Abstract][Full Text] [Related]
10. High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles. Hair JW; Caldwell LM; Krueger DA; She CY Appl Opt; 2001 Oct; 40(30):5280-94. PubMed ID: 18364809 [TBL] [Abstract][Full Text] [Related]
11. Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations. Di Girolamo P; Behrendt A; Wulfmeyer V Appl Opt; 2006 Apr; 45(11):2474-94. PubMed ID: 16623245 [TBL] [Abstract][Full Text] [Related]
12. 1064 nm rotational Raman polarization lidar for profiling aerosol and cloud characteristics. Wang L; Yin Z; Lu T; Yi Y; Dong X; Dai Y; Bu Z; Chen Y; Wang X Opt Express; 2024 Apr; 32(9):14963-14977. PubMed ID: 38859159 [TBL] [Abstract][Full Text] [Related]
13. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere. Hua D; Kobayashi T Appl Opt; 2005 Oct; 44(30):6474-8. PubMed ID: 16252659 [TBL] [Abstract][Full Text] [Related]
14. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer. Arshinov Y; Bobrovnikov S; Serikov I; Ansmann A; Wandinger U; Althausen D; Mattis I; Müller D Appl Opt; 2005 Jun; 44(17):3593-603. PubMed ID: 16007859 [TBL] [Abstract][Full Text] [Related]
15. Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere. Hua D; Uchida M; Kobayashi T Appl Opt; 2005 Mar; 44(7):1305-14. PubMed ID: 15765711 [TBL] [Abstract][Full Text] [Related]
16. Assessing the temperature dependence of narrow-band Raman water vapor lidar measurements: a practical approach. Whiteman DN; Venable DD; Walker M; Cadirola M; Sakai T; Veselovskii I Appl Opt; 2013 Aug; 52(22):5376-84. PubMed ID: 23913054 [TBL] [Abstract][Full Text] [Related]
17. Examination of the traditional Raman lidar technique. I. Evaluating the temperature-dependent lidar equations. Whiteman DN Appl Opt; 2003 May; 42(15):2571-92. PubMed ID: 12776994 [TBL] [Abstract][Full Text] [Related]
18. Retrieval and Analysis of Atmospheric Temperature Using a Rotational Raman Lidar Observation. Liu YL; Xie CB; Shang Z; Zhao M; Cao KF; Sun YS Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Jun; 36(6):1978-86. PubMed ID: 30053364 [TBL] [Abstract][Full Text] [Related]
19. Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. Behrendt A; Nakamura T; Onishi M; Baumgart R; Tsuda T Appl Opt; 2002 Dec; 41(36):7657-66. PubMed ID: 12510935 [TBL] [Abstract][Full Text] [Related]
20. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator. Behrendt A; Reichardt J Appl Opt; 2000 Mar; 39(9):1372-8. PubMed ID: 18338020 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]