These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices. Giridhar MS; Seong K; Schülzgen A; Khulbe P; Peyghambarian N; Mansuripur M Appl Opt; 2004 Aug; 43(23):4584-9. PubMed ID: 15376436 [TBL] [Abstract][Full Text] [Related]
4. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238 [TBL] [Abstract][Full Text] [Related]
5. Bonding Strength of a Glass Microfluidic Device Fabricated by Femtosecond Laser Micromachining and Direct Welding. Kim S; Kim J; Joung YH; Choi J; Koo C Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30513880 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of Silicon Microfluidic Chips for Acoustic Particle Focusing Using Direct Laser Writing. Fornell A; Söderbäck P; Liu Z; De Albuquerque Moreira M; Tenje M Micromachines (Basel); 2020 Jan; 11(2):. PubMed ID: 31972982 [TBL] [Abstract][Full Text] [Related]
8. Rapid Laser Manufacturing of Microfluidic Devices from Glass Substrates. Wlodarczyk KL; Carter RM; Jahanbakhsh A; Lopes AA; Mackenzie MD; Maier RRJ; Hand DP; Maroto-Valer MM Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424342 [TBL] [Abstract][Full Text] [Related]
9. Femtosecond laser machined microfluidic devices for imaging of cells during chemotaxis. Costa L; Terekhov A; Rajput D; Hofmeister W; Jowhar D; Wright G; Janetopoulos C J Laser Appl; 2011 Nov; 23(4):1.3614405. PubMed ID: 24532962 [TBL] [Abstract][Full Text] [Related]
10. Micro-channels machined in microstructured optical fibers by femtosecond laser. van Brakel A; Grivas C; Petrovich MN; Richardson DJ Opt Express; 2007 Jul; 15(14):8731-6. PubMed ID: 19547208 [TBL] [Abstract][Full Text] [Related]
11. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization. Kojic SP; Stojanovic GM; Radonic V Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30974880 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining. Song J; Lin J; Tang J; Liao Y; He F; Wang Z; Qiao L; Sugioka K; Cheng Y Opt Express; 2014 Jun; 22(12):14792-802. PubMed ID: 24977574 [TBL] [Abstract][Full Text] [Related]
13. Wafer-scale high aspect-ratio sapphire periodic nanostructures fabricated by self-modulated femtosecond laser hybrid technology. Sun XC; Liu XQ; Sun ZJ; Li SX; Zheng JX; Xia H; Wang L Opt Express; 2022 Aug; 30(18):32244-32255. PubMed ID: 36242290 [TBL] [Abstract][Full Text] [Related]
14. Solvent Bonding for Fabrication of PMMA and COP Microfluidic Devices. Wan AM; Moore TA; Young EW J Vis Exp; 2017 Jan; (119):. PubMed ID: 28117831 [TBL] [Abstract][Full Text] [Related]
15. Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. Liao Y; Song J; Li E; Luo Y; Shen Y; Chen D; Cheng Y; Xu Z; Sugioka K; Midorikawa K Lab Chip; 2012 Feb; 12(4):746-9. PubMed ID: 22231027 [TBL] [Abstract][Full Text] [Related]
16. Interface Characteristics of Sapphire Direct Bonding for High-Temperature Applications. Li W; Liang T; Chen Y; Jia P; Xiong J; Hong Y; Lei C; Yao Z; Qi L; Liu W Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28892010 [TBL] [Abstract][Full Text] [Related]
17. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications. Yue W; Li CW; Xu T; Yang M Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749 [TBL] [Abstract][Full Text] [Related]
18. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells. Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523 [TBL] [Abstract][Full Text] [Related]
19. Effect of Ti:sapphire laser on shear bond strength of orthodontic brackets to ceramic surfaces. Erdur EA; Basciftci FA Lasers Surg Med; 2015 Aug; 47(6):512-9. PubMed ID: 25994849 [TBL] [Abstract][Full Text] [Related]
20. Effect of Process Parameters and Material Properties on Laser Micromachining of Microchannels. Benton M; Hossan MR; Konari PR; Gamagedara S Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]