These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33104789)

  • 21. Invisible RNA state dynamically couples distant motifs.
    Lee J; Dethoff EA; Al-Hashimi HM
    Proc Natl Acad Sci U S A; 2014 Jul; 111(26):9485-90. PubMed ID: 24979799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR characterization of a kissing complex formed between the TAR RNA element of HIV-1 and a DNA aptamer.
    Collin D; van Heijenoort C; Boiziau C; Toulmé JJ; Guittet E
    Nucleic Acids Res; 2000 Sep; 28(17):3386-91. PubMed ID: 10954609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An RNA excited conformational state at atomic resolution.
    Geng A; Ganser L; Roy R; Shi H; Pratihar S; Case DA; Al-Hashimi HM
    Nat Commun; 2023 Dec; 14(1):8432. PubMed ID: 38114465
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic ensemble view of the conformational landscape of HIV-1 TAR RNA and allosteric recognition.
    Lu J; Kadakkuzha BM; Zhao L; Fan M; Qi X; Xia T
    Biochemistry; 2011 Jun; 50(22):5042-57. PubMed ID: 21553929
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation.
    Ippolito JA; Steitz TA
    Proc Natl Acad Sci U S A; 1998 Aug; 95(17):9819-24. PubMed ID: 9707559
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of the conformational ensemble of the TAR RNA by X-ray scattering interferometry.
    Shi X; Walker P; Harbury PB; Herschlag D
    Nucleic Acids Res; 2017 May; 45(8):e64. PubMed ID: 28108663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding the characteristics of nonspecific binding of drug-like compounds to canonical stem-loop RNAs and their implications for functional cellular assays.
    Kelly ML; Chu CC; Shi H; Ganser LR; Bogerd HP; Huynh K; Hou Y; Cullen BR; Al-Hashimi HM
    RNA; 2021 Jan; 27(1):12-26. PubMed ID: 33028652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base flexibility in HIV-2 TAR RNA mapped by solution (15)N, (13)C NMR relaxation.
    Dayie KT; Brodsky AS; Williamson JR
    J Mol Biol; 2002 Mar; 317(2):263-78. PubMed ID: 11902842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of an RNA/DNA dodecamer corresponding to the HIV-1 polypurine tract at 1.6 Å resolution.
    Drozdzal P; Michalska K; Kierzek R; Lomozik L; Jaskolski M
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):169-75. PubMed ID: 22281746
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Equilibrium unfolding (folding) pathway of a model H-type pseudoknotted RNA: the role of magnesium ions in stability.
    Nixon PL; Giedroc DP
    Biochemistry; 1998 Nov; 37(46):16116-29. PubMed ID: 9819204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hexitol nucleic acid-containing aptamers are efficient ligands of HIV-1 TAR RNA.
    Kolb G; Reigadas S; Boiziau C; van Aerschot A; Arzumanov A; Gait MJ; Herdewijn P; Toulmé JJ
    Biochemistry; 2005 Mar; 44(8):2926-33. PubMed ID: 15723535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic examination of trinucleotide bulged RNA in the context of HIV-1 TAR RNA.
    Carter-O'Connell I; Booth D; Eason B; Grover N
    RNA; 2008 Dec; 14(12):2550-6. PubMed ID: 18952821
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An NMR study of the HIV-1 TAR element hairpin.
    Jaeger JA; Tinoco I
    Biochemistry; 1993 Nov; 32(46):12522-30. PubMed ID: 8241143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Concerted motions in HIV-1 TAR RNA may allow access to bound state conformations: RNA dynamics from NMR residual dipolar couplings.
    Al-Hashimi HM; Gosser Y; Gorin A; Hu W; Majumdar A; Patel DJ
    J Mol Biol; 2002 Jan; 315(2):95-102. PubMed ID: 11779230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Atomic structures of excited state A-T Hoogsteen base pairs in duplex DNA by combining NMR relaxation dispersion, mutagenesis, and chemical shift calculations.
    Shi H; Clay MC; Rangadurai A; Sathyamoorthy B; Case DA; Al-Hashimi HM
    J Biomol NMR; 2018 Apr; 70(4):229-244. PubMed ID: 29675775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Constructing RNA dynamical ensembles by combining MD and motionally decoupled NMR RDCs: new insights into RNA dynamics and adaptive ligand recognition.
    Frank AT; Stelzer AC; Al-Hashimi HM; Andricioaei I
    Nucleic Acids Res; 2009 Jun; 37(11):3670-9. PubMed ID: 19369218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of thermodynamic parameters for HIV DIS type loop-loop kissing complexes.
    Weixlbaumer A; Werner A; Flamm C; Westhof E; Schroeder R
    Nucleic Acids Res; 2004; 32(17):5126-33. PubMed ID: 15459283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resolving the motional modes that code for RNA adaptation.
    Zhang Q; Sun X; Watt ED; Al-Hashimi HM
    Science; 2006 Feb; 311(5761):653-6. PubMed ID: 16456078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence.
    Bernacchi S; Stoylov S; Piémont E; Ficheux D; Roques BP; Darlix JL; Mély Y
    J Mol Biol; 2002 Mar; 317(3):385-99. PubMed ID: 11922672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA conformational propensities determine cellular activity.
    Ken ML; Roy R; Geng A; Ganser LR; Manghrani A; Cullen BR; Schulze-Gahmen U; Herschlag D; Al-Hashimi HM
    Nature; 2023 May; 617(7962):835-841. PubMed ID: 37198487
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.