BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 33104791)

  • 21. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts.
    Freshour SL; Kiwala S; Cotto KC; Coffman AC; McMichael JF; Song JJ; Griffith M; Griffith OL; Wagner AH
    Nucleic Acids Res; 2021 Jan; 49(D1):D1144-D1151. PubMed ID: 33237278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Charting, navigating, and populating natural product chemical space for drug discovery.
    Lachance H; Wetzel S; Kumar K; Waldmann H
    J Med Chem; 2012 Jul; 55(13):5989-6001. PubMed ID: 22537178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method for Systematic Analogue Search Using the Mega SAR Matrix Database.
    Yoshimori A; Horita Y; Tanoue T; Bajorath J
    J Chem Inf Model; 2019 Sep; 59(9):3727-3734. PubMed ID: 31468964
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring Natural Products from the Biodiversity of Pakistan for Computational Drug Discovery Studies: Collection, Optimization, Design and Development of A Chemical Database (ChemDP).
    Mirza SB; Bokhari H; Fatmi MQ
    Curr Comput Aided Drug Des; 2015; 11(2):102-9. PubMed ID: 26343150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Drug-likeness and increased hydrophobicity of commercially available compound libraries for drug screening.
    Zuegg J; Cooper MA
    Curr Top Med Chem; 2012; 12(14):1500-13. PubMed ID: 22827520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The SGC beyond structural genomics: redefining the role of 3D structures by coupling genomic stratification with fragment-based discovery.
    Bradley AR; Echalier A; Fairhead M; Strain-Damerell C; Brennan P; Bullock AN; Burgess-Brown NA; Carpenter EP; Gileadi O; Marsden BD; Lee WH; Yue W; Bountra C; von Delft F
    Essays Biochem; 2017 Nov; 61(5):495-503. PubMed ID: 29118096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small molecule databases and chemical descriptors useful in chemoinformatics: an overview.
    Gozalbes R; Pineda-Lucena A
    Comb Chem High Throughput Screen; 2011 Jul; 14(6):548-458. PubMed ID: 21521149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combination of Pharmacophore Matching, 2D Similarity Search, and In Vitro Biological Assays in the Selection of Potential 5-HT6 Antagonists from Large Commercial Repositories.
    Dobi K; Flachner B; Pukáncsik M; Máthé E; Bognár M; Szaszkó M; Magyar C; Hajdú I; Lőrincz Z; Simon I; Fülöp F; Cseh S; Dormán G
    Chem Biol Drug Des; 2015 Oct; 86(4):864-80. PubMed ID: 25823681
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Drug discovery conference 2008. Small-Molecule Drug Discovery: From Early Stage to the Clinic.
    Terrett NK
    IDrugs; 2008 Mar; 11(3):164-8. PubMed ID: 18311648
    [No Abstract]   [Full Text] [Related]  

  • 30. Is chemical synthetic accessibility computationally predictable for drug and lead-like molecules? A comparative assessment between medicinal and computational chemists.
    Bonnet P
    Eur J Med Chem; 2012 Aug; 54():679-89. PubMed ID: 22749644
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversifying chemical libraries with generative topographic mapping.
    Lin A; Beck B; Horvath D; Marcou G; Varnek A
    J Comput Aided Mol Des; 2020 Jul; 34(7):805-815. PubMed ID: 31407224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extending accessible chemical space for the identification of novel leads.
    Bajorath J
    Expert Opin Drug Discov; 2016 Sep; 11(9):825-9. PubMed ID: 27383145
    [No Abstract]   [Full Text] [Related]  

  • 33. Biodiversity of small molecules--a new perspective in screening set selection.
    Petrone PM; Wassermann AM; Lounkine E; Kutchukian P; Simms B; Jenkins J; Selzer P; Glick M
    Drug Discov Today; 2013 Jul; 18(13-14):674-80. PubMed ID: 23454345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Counting on Fragment Based Drug Design Approach for Drug Discovery.
    Kashyap A; Singh PK; Silakari O
    Curr Top Med Chem; 2018; 18(27):2284-2293. PubMed ID: 30499406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MQN-mapplet: visualization of chemical space with interactive maps of DrugBank, ChEMBL, PubChem, GDB-11, and GDB-13.
    Awale M; van Deursen R; Reymond JL
    J Chem Inf Model; 2013 Feb; 53(2):509-18. PubMed ID: 23297797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach.
    Hoffer L; Voitovich YV; Raux B; Carrasco K; Muller C; Fedorov AY; Derviaux C; Amouric A; Betzi S; Horvath D; Varnek A; Collette Y; Combes S; Roche P; Morelli X
    J Med Chem; 2018 Jul; 61(13):5719-5732. PubMed ID: 29883107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database.
    Hall RJ; Murray CW; Verdonk ML
    J Med Chem; 2017 Jul; 60(14):6440-6450. PubMed ID: 28712298
    [TBL] [Abstract][Full Text] [Related]  

  • 38. FilTer BaSe: A web accessible chemical database for small compound libraries.
    Kolte BS; Londhe SR; Solanki BR; Gacche RN; Meshram RJ
    J Mol Graph Model; 2018 Mar; 80():95-103. PubMed ID: 29328995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fragment-Based Ligand Designing.
    Katiyar SP; Malik V; Kumari A; Singh K; Sundar D
    Methods Mol Biol; 2018; 1762():123-144. PubMed ID: 29594771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Privileged structures: efficient chemical "navigators" toward unexplored biologically relevant chemical spaces.
    Kim J; Kim H; Park SB
    J Am Chem Soc; 2014 Oct; 136(42):14629-38. PubMed ID: 25310802
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.