These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33104911)

  • 21. A mathematical model for the role of dopamine-D2 self-regulation in the production of ultradian rhythms.
    Zhang AQ; Ralph MR; Stinchcombe AR
    PLoS Comput Biol; 2024 May; 20(5):e1012082. PubMed ID: 38701077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultradian Near 2-4-h Rhythms of Body Temperature in Laboratory Rodents Depend on External Environmental Heliogeophysical Factor Reflected by Neutron Monitor Count Rate.
    Diatroptov ME; Diatroptova MA; Surov AV
    Bull Exp Biol Med; 2022 May; 173(1):92-97. PubMed ID: 35618968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Analyses of rhythms of the body temperature in free running in rats].
    Deprés-Brummer P; Metzger G; Lévi F
    Pathol Biol (Paris); 1996 Mar; 44(3):150-6. PubMed ID: 8761601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The circadian rhythm of thermoregulation in Japanese quail. II. Multioscillator control.
    Underwood H; Edmonds K
    J Biol Rhythms; 1995 Sep; 10(3):234-47. PubMed ID: 7488761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Circadian and ultradian patterns of HPA-axis activity in rodents: Significance for brain functionality.
    den Boon FS; Sarabdjitsingh RA
    Best Pract Res Clin Endocrinol Metab; 2017 Oct; 31(5):445-457. PubMed ID: 29223280
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociation of circadian activity and singing behavior from gene expression rhythms in the hypothalamus, song control nuclei and cerebellum in diurnal zebra finches.
    Prabhat A; Jha NA; Taufique SKT; Kumar V
    Chronobiol Int; 2019 Sep; 36(9):1268-1284. PubMed ID: 31296059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Circadian rhythm abnormalities of deep body temperature in depressive disorders.
    Daimon K; Yamada N; Tsujimoto T; Takahashi S
    J Affect Disord; 1992 Nov; 26(3):191-8. PubMed ID: 1460169
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the Periodic "Spontaneous" Activity of Animals Determined by a Quasi-Rhythmic Factor of the External Environment?
    Diatroptov ME; Surov AV
    Dokl Biol Sci; 2021 Mar; 497(1):69-72. PubMed ID: 33948821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotelemetry transmitter implantation in rodents: impact on growth and circadian rhythms.
    Leon LR; Walker LD; DuBose DA; Stephenson LA
    Am J Physiol Regul Integr Comp Physiol; 2004 May; 286(5):R967-74. PubMed ID: 14726427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of nesting material on mouse body temperature and physiology.
    Gaskill BN; Gordon CJ; Pajor EA; Lucas JR; Davis JK; Garner JP
    Physiol Behav; 2013 Feb; 110-111():87-95. PubMed ID: 23313562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical Modelling of Endocrine Systems.
    Zavala E; Wedgwood KCA; Voliotis M; Tabak J; Spiga F; Lightman SL; Tsaneva-Atanasova K
    Trends Endocrinol Metab; 2019 Apr; 30(4):244-257. PubMed ID: 30799185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.
    Mousel MR; Stroup WW; Nielsen MK
    J Anim Sci; 2001 Apr; 79(4):861-8. PubMed ID: 11325190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling cholesterol effects on the dynamics of the hypothalamic-pituitary-adrenal (HPA) axis.
    Marković VM; Čupić Ž; Maćešić S; Stanojević A; Vukojević V; Kolar-Anić L
    Math Med Biol; 2016 Mar; 33(1):1-28. PubMed ID: 25332212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The circadian rhythm of thermoregulation in Japanese quail: III. Effects of melatonin administration.
    Underwood H; Edmonds K
    J Biol Rhythms; 1995 Dec; 10(4):284-98. PubMed ID: 8639937
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic heat production and thermal conductance are mass-independent adaptations to thermal environment in birds and mammals.
    Fristoe TS; Burger JR; Balk MA; Khaliq I; Hof C; Brown JH
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15934-9. PubMed ID: 26668359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Circadian temperature and wake rhythms of rats exposed to prolonged continuous illumination.
    Eastman C; Rechtschaffen A
    Physiol Behav; 1983 Oct; 31(4):417-27. PubMed ID: 6657763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhythms of body temperature and temperature selection are out of phase in a diurnal rodent, Octodon degus.
    Refinetti R
    Physiol Behav; 1996 Sep; 60(3):959-61. PubMed ID: 8873275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature effect on entrainment, phase shifting, and amplitude of circadian clocks and its molecular bases.
    Rensing L; Ruoff P
    Chronobiol Int; 2002 Sep; 19(5):807-64. PubMed ID: 12405549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adaptation to daily meal-timing and its effect on circadian temperature rhythms in two inbred strains of mice.
    Hotz MM; Connolly MS; Lynch CB
    Behav Genet; 1987 Jan; 17(1):37-51. PubMed ID: 3593153
    [No Abstract]   [Full Text] [Related]  

  • 40. Rhythms of temperature selection and body temperature are out of phase in the golden hamster.
    Refinetti R
    Behav Neurosci; 1995 Jun; 109(3):523-7. PubMed ID: 7662161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.