BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33105079)

  • 1. Bienenstock-Cooper-Munro Learning Rule Realized in Polysaccharide-Gated Synaptic Transistors with Tunable Threshold.
    Guo J; Liu Y; Li Y; Li F; Huang F
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50061-50067. PubMed ID: 33105079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Bienenstock-Cooper-Munro learning rules in a two-terminal memristor for neuromorphic computing.
    Li Z; Liu P; Yang G; Jia C; Zhang W
    Phys Chem Chem Phys; 2023 Jun; 25(23):15920-15928. PubMed ID: 37260344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices.
    Wang Z; Zeng T; Ren Y; Lin Y; Xu H; Zhao X; Liu Y; Ielmini D
    Nat Commun; 2020 Mar; 11(1):1510. PubMed ID: 32198368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction to "Bienenstock-Cooper-Munro Learning Rule Realized in Polysaccharide-Gated Synaptic Transistors with Tunable Threshold".
    Guo J; Liu Y; Li Y; Li F; Huang F
    ACS Appl Mater Interfaces; 2021 May; 13(17):20919. PubMed ID: 33900717
    [No Abstract]   [Full Text] [Related]  

  • 6. A neuromorphic VLSI design for spike timing and rate based synaptic plasticity.
    Rahimi Azghadi M; Al-Sarawi S; Abbott D; Iannella N
    Neural Netw; 2013 Sep; 45():70-82. PubMed ID: 23566339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan-Based Polysaccharide-Gated Flexible Indium Tin Oxide Synaptic Transistor with Learning Abilities.
    Yu F; Zhu LQ; Gao WT; Fu YM; Xiao H; Tao J; Zhou JM
    ACS Appl Mater Interfaces; 2018 May; 10(19):16881-16886. PubMed ID: 29687712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.
    Yang Y; Wen J; Guo L; Wan X; Du P; Feng P; Shi Y; Wan Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30281-30286. PubMed ID: 27748109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Synapse Emulated through Fully Aqueous Solution-Processed Low-Voltage In
    Zhou Y; Li J; Yang Y; Chen Q; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):980-988. PubMed ID: 31815416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatible Casein Electrolyte-Based Electric-Double-Layer for Artificial Synaptic Transistors.
    Kim HS; Park H; Cho WJ
    Nanomaterials (Basel); 2022 Jul; 12(15):. PubMed ID: 35957025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolving Dual-Threshold Bienenstock-Cooper-Munro Learning Rules in Echo State Networks.
    Wang X; Jin Y; Du W; Wang J
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):1572-1583. PubMed ID: 35763483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity Dependent Synaptic Plasticity Mimicked on Indium-Tin-Oxide Electric-Double-Layer Transistor.
    Wen J; Zhu LQ; Fu YM; Xiao H; Guo LQ; Wan Q
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):37064-37069. PubMed ID: 28975791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic Transistors Based on PVA: Chitosan Biopolymer Blended Electric-Double-Layer with High Ionic Conductivity.
    Lee DH; Park H; Cho WJ
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission.
    Toyoizumi T; Pfister JP; Aihara K; Gerstner W
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5239-44. PubMed ID: 15795376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing.
    Monalisha P; Kumar APS; Wang XR; Piramanayagam SN
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendrite Integration Mimicked on Starch-Based Electrolyte-Gated Oxide Dendrite Transistors.
    Gao WT; Zhu LQ; Tao J; Wan DY; Xiao H; Yu F
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40008-40013. PubMed ID: 30362346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aligned Carbon Nanotube Synaptic Transistors for Large-Scale Neuromorphic Computing.
    Sanchez Esqueda I; Yan X; Rutherglen C; Kane A; Cain T; Marsh P; Liu Q; Galatsis K; Wang H; Zhou C
    ACS Nano; 2018 Jul; 12(7):7352-7361. PubMed ID: 29944826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton-Gated Synaptic Transistors, Based on an Electron-Beam Patterned Nafion Electrolyte.
    Mohanty HN; Tsuruoka T; Mohanty JR; Terabe K
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19279-19289. PubMed ID: 37023114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review.
    Bag SP; Lee S; Song J; Kim J
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems.
    Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M
    Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.