These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 33105746)
1. Effect of Laser Shock Peening on Fretting Fatigue Life of TC11 Titanium Alloy. Yang X; Zhang H; Cui H; Wen C Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105746 [TBL] [Abstract][Full Text] [Related]
2. Effect of Residual Stress on S-N Curves and Fracture Morphology of Ti6Al4V Titanium Alloy after Laser Shock Peening without Protective Coating. Pan X; Li X; Zhou L; Feng X; Luo S; He W Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752327 [TBL] [Abstract][Full Text] [Related]
3. Numerical Prediction of the Effect of Laser Shock Peening on Residual Stress and Fatigue Life of Ti-6Al-4V Titanium Alloy. Ouyang P; Luo X; Dong Z; Zhang S Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013641 [TBL] [Abstract][Full Text] [Related]
4. Effects of Shot Peening on Fretting Fatigue Crack Initiation Behavior. Liu X; Liu J; Zuo Z; Zhang H Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30836696 [TBL] [Abstract][Full Text] [Related]
5. Effect of laser shock peening on fatigue life and surface characteristics of stainless steel cortical bone screws. O'Sullivan CB; Bertone AL; Litsky AS; Robertson JT Am J Vet Res; 2004 Jul; 65(7):972-6. PubMed ID: 15281657 [TBL] [Abstract][Full Text] [Related]
6. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening. Gujba AK; Medraj M Materials (Basel); 2014 Dec; 7(12):7925-7974. PubMed ID: 28788284 [TBL] [Abstract][Full Text] [Related]
7. Effects of Plasma ZrN Metallurgy and Shot Peening Duplex Treatment on Fretting Wear and Fretting Fatigue Behavior of Ti6Al4V Alloy. Tang J; Liu D; Zhang X; Du D; Yu S Materials (Basel); 2016 Mar; 9(4):. PubMed ID: 28773345 [TBL] [Abstract][Full Text] [Related]
8. Effect of Various Peening Methods on the Fatigue Properties of Titanium Alloy Ti6Al4V Manufactured by Direct Metal Laser Sintering and Electron Beam Melting. Soyama H; Takeo F Materials (Basel); 2020 May; 13(10):. PubMed ID: 32408590 [TBL] [Abstract][Full Text] [Related]
9. Fatigue Life Enhancement of Titanium Alloy by the Development of Nano/Micron Surface Layer Using Laser Peening. Rajan SS; Swaroop S; Manivasagam G; Rao MN J Nanosci Nanotechnol; 2019 Nov; 19(11):7064-7073. PubMed ID: 31039859 [TBL] [Abstract][Full Text] [Related]
10. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation. Luo S; Zhou L; Wang X; Cao X; Nie X; He W Materials (Basel); 2018 Apr; 11(4):. PubMed ID: 29642379 [TBL] [Abstract][Full Text] [Related]
11. Laser Shock Peening of SiCp/2009Al Composites: Microstructural Evolution, Residual Stress and Fatigue Behavior. Sun R; Cao Z; Zhang Y; Zhang H; Yu Y; Che Z; Wu J; Zou S; Guo W Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33652572 [TBL] [Abstract][Full Text] [Related]
12. Investigation of Strain Fatigue Behavior for Inconel 625 with Laser Shock Peening. Sun Y; Wu H; Du H; Yao Z Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295330 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Fatigue Life of GH3039 Superalloy by Laser Shock Peening. Tang Y; Ge M; Zhang Y; Wang T; Zhou W Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32878304 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of TiN Coatings Deposited on Laser Shock Micro-Textured Substrates for Improving the Interface Adhesion Properties of Coatings. Xu Y; Chen Y; Zhou D; Zhang L; Su B Materials (Basel); 2024 Jul; 17(13):. PubMed ID: 38998383 [TBL] [Abstract][Full Text] [Related]
15. Simulation and Experimental Study on Residual Stress Distribution in Titanium Alloy Treated by Laser Shock Peening with Flat-Top and Gaussian Laser Beams. Li X; He W; Luo S; Nie X; Tian L; Feng X; Li R Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31022993 [TBL] [Abstract][Full Text] [Related]
16. Effects of laser shock peening on the corrosion behavior and biocompatibility of a nickel-titanium alloy. Zhang R; Mankoci S; Walters N; Gao H; Zhang H; Hou X; Qin H; Ren Z; Zhou X; Doll GL; Martini A; Sahai N; Dong Y; Ye C J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1854-1863. PubMed ID: 30550636 [TBL] [Abstract][Full Text] [Related]
17. Fretting Fatigue with Cylindrical-On-Flat Contact: Crack Nucleation, Crack Path and Fatigue Life. Noraphaiphipaksa N; Manonukul A; Kanchanomai C Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772522 [TBL] [Abstract][Full Text] [Related]
18. Impact on Mechanical Properties and Microstructural Response of Nickel-Based Superalloy GH4169 Subjected to Warm Laser Shock Peening. Lu Y; Yang Y; Zhao J; Yang Y; Qiao H; Hu X; Wu J; Sun B Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33207847 [TBL] [Abstract][Full Text] [Related]
19. Fatigue performance of medical Ti6Al4V alloy after mechanical surface treatments. Sonntag R; Reinders J; Gibmeier J; Kretzer JP PLoS One; 2015; 10(3):e0121963. PubMed ID: 25823001 [TBL] [Abstract][Full Text] [Related]
20. Numerical Study of the Effects of Residual Stress on Fretting Fatigue Using XFEM. Zhang H; Liu J; Zuo Z Materials (Basel); 2015 Oct; 8(10):7094-7105. PubMed ID: 28793621 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]