These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33105746)

  • 21. Unraveling Residual Stress Distribution Characteristics of 6061-T6 Aluminum Alloy Induced by Laser Shock Peening.
    Wang Q; Ge Y; Chen J; Suzuki T; Sagisaka Y; Ma N
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the Microstructure, Residual Stress and Fatigue Performance of Laser Metal Deposited TC17 Alloy Subjected to Laser Shock Peening.
    An Z; He W; Zhou X; Zhou L; Nie X
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143811
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.
    Su C; Zhou J; Meng X; Huang S
    Materials (Basel); 2016 Sep; 9(10):. PubMed ID: 28773920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Ultrasonic Shot Peening and Laser Shock Peening on the Microstructure and Microhardness of IN738LC Alloys.
    Liu S; Kim Y; Jung J; Bae S; Jeong S; Shin K
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fretting Fatigue Experiment and Analysis of AlSi9Cu2Mg Alloy.
    Wang J; Xu H; Su T; Zhang Y; Guo Z; Mao H; Zhang Y
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774103
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of WC-17Co Coating Combined with Shot Peening Treatment on Fatigue Behaviors of TC21 Titanium Alloy.
    Du D; Liu D; Zhang X; Tang J; Meng B
    Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dislocation Mechanism and Grain Refinement of Surface Modification of NV E690 Cladding Layer Induced by Laser Shock Peening.
    Cao Y; Zhu P; Yang Y; Shi W; Qiu M; Wang H; Xie P
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295318
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of 3D-printed PLA coatings on pure and fretting fatigue properties of AM60 magnesium alloys under cyclic bending loads.
    Rezanezhad S; Azadi M
    Heliyon; 2024 Apr; 10(8):e29552. PubMed ID: 38681535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact-Sliding Tribology Behavior of TC17 Alloy Treated by Laser Shock Peening.
    Yin M; Wang W; He W; Cai Z
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30018270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface Conditions after LASER Shock Peening of Steel and Aluminum Alloys Using Ultrafast Laser Pulses.
    Schubnell J; Carl ER; Sarmast A; Hinterstein M; Preußner J; Seifert M; Kaufmann C; Rußbüldt P; Schulte J
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Effect of Modulation Ratio of Cu/Ni Multilayer Films on the Fretting Damage Behaviour of Ti-811 Titanium Alloy.
    Zhang X; Liu D; Li X; Dong H; Xi Y
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772947
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigations into the Improvement of the Mechanical Properties of Ti-5Al-4Mo-4Cr-2Sn-2Zr Titanium Alloy by Using Low Energy Laser Peening without Coating.
    Xue D; Jiao Y; He W; Shen X; Gao Y; Wang L
    Materials (Basel); 2020 Mar; 13(6):. PubMed ID: 32204483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Confinement and absorption layer free nanosecond laser shock peening of tungsten and its alloy.
    Banerjee S; Spear J
    Opt Lett; 2022 Sep; 47(18):4736-4739. PubMed ID: 36107075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A parametric neutron Bragg edge imaging study of additively manufactured samples treated by laser shock peening.
    Busi M; Kalentics N; Morgano M; Griffiths S; Tremsin AS; Shinohara T; Logé R; Leinenbach C; Strobl M
    Sci Rep; 2021 Jul; 11(1):14919. PubMed ID: 34290334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Failure Mechanism Research on Bending Fretting Fatigue of 6061-T6 Aluminum Alloy by Experiment and Finite Element Method.
    Ding J; Yang L; Liu W
    Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microstructural Evolution and Surface Mechanical Properties of the Titanium Alloy Ti-13Nb-13Zr Subjected to Laser Shock Processing.
    Wu J; Lin X; Qiao H; Zhao J; Ding W; Zhu R
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Evolution of Fretting Wear Behavior and Damage Mechanism in Alloy 690TT with Cycle Number.
    Xin L; Han Y; Ling L; Zhang W; Lu Y; Shoji T
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32466203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peening Techniques for Surface Modification: Processes, Properties, and Applications.
    John M; Kalvala PR; Misra M; Menezes PL
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300760
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface Characterizations of Fretting Fatigue Damage in Aluminum Alloy 7075-T6 Clamped Joints: The Beneficial Role of Ni-P Coatings.
    Oskouei RH; Barati MR; Ibrahim RN
    Materials (Basel); 2016 Feb; 9(3):. PubMed ID: 28773267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of contact conditions and micromotions on the fretting behavior of modular titanium alloy taper connections.
    Baxmann M; Jauch SY; Schilling C; Blömer W; Grupp TM; Morlock MM
    Med Eng Phys; 2013 May; 35(5):676-83; discussion 676. PubMed ID: 22940445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.